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When n→∞, this ratio goes to a constant, denoted by α.
Notice that now the physical model can be treated as a protocol model because the ratio 

between the sizes of interference block and micro cell L
d

 is bounded by the constant α. By having 

interference blocks, we can simply use the data collection scheme for protocol model, which has 
already been presented in Section 1.2.2, to perform the data collection. It is easy to show that the 
same capacity can be achieved compared with the protocol model. In summary, we have the fol-
lowing theorem for the physical model:

Theorem 4

Under the physical model [24,25], the delay rate Γ and the capacity C of data collection in random 
sensor networks with a single sink are both Θ(W ).

1.2.4.2 Data Collection under the Generalized Physical Model

The physical model assumes a threshold-based channel in which the signal can be decoded at 
a fixed constant rate of W bits per second only if the SINR is greater than a certain threshold. 
If the SINR is below this threshold, no throughput is received at all. However, in practice, the 
throughput is usually a function of the SINR at the receiver. Thus, the generalized physical model 
is a more realistic communication model than the protocol or physical models, especially under 
random extended networks [28]. Therefore, we also study the theoretical bounds of data collection 
capacity under the generalized physical model. Notice that because the data rate is now related to 
SINR and interference, the capacity analysis becomes much more complex and challenging.

First, we give a lemma to derive an upper bound of data collection capacity under the general-
ized physical model.

Lemma 4

Under the generalized physical model [25], the capacity of data collection in random sensor net-
works is at most O[(log n) W ].

Proof

We first order all the incoming links of sink s according to their length as follows: ||v1 − s|| ≤ ||v2 − 
s|| ≤ … ≤ ||vn′ − s||. Here, n′ is the number of incoming links at sink s, which transmits simultane-
ously to s; clearly, n′ ≤ n. Next, we try to bound the SINR of the sink node s. For any link vis (i ≠ 1), 
its SINR
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 ≤ maxi(Wis) + W · log2n′ ≤ maxi(Wis) + W · log2 n. 

The first part of this upper bound depends on the rate of the shortest incoming link 
at the sink, whereas the second part depends on the total number of nodes. Notice that 

max log( )i isW W P
N

≤ ⋅ +⎛
⎝⎜

⎞
⎠⎟2

0
1 . Thus, which part of the bound that is playing an important role 

depends on the relationship between n and 1
0

+ P
N . If P and N0 are constants as we assumed, 

maxi(Wis) ≤ O(W ). Then, the upper bound of capacity can be written as O((log n) W ).
We now can introduce our data collection algorithm, which uses the same partition method 

and scheduling algorithm as that of the physical model. The only difference is the size of the 
interference block.

We now divide the field into big interference blocks of a certain size L(d) × L(d) as shown in 

Figure 1.7. Thus, the number of interference blocks is 
l

L d

2

2( )
. In our collection scheme, we will 

schedule data transmission in parallel at all blocks but make sure that there is only one sensor in 
each interference block transferring at any time.

We now prove that the transmission rate of each transmitting sensor node in such data collec-

tion scheme is at least Ω (log )n W
−( )β

2 , if L(d) = κd and κ > 2 is a constant.

Lemma 5

In each interference block with size of κd × κd [25], there exists a node that can transmit at rate 

Ω (log )n W
−( )β

2  to any destination in its adjacent cell.
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Proof

Let us focus on one given sensor node vi, which transmits to a destination vj in vi’s adjacent cell. 
Its transmission rate is:
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Because the distance between vi and vj is at most 5d , P l v v P d di j⋅ ≥ ⋅ =− −( , ) ( ) ( )5 β βΩ .
We then need to find the upper bound of the interference at the receiver vj from simultaneous 

transmitters. Using the same technique in Section 1.2.4.1, we consider layers of simultaneous 
transmissions in surrounding interference blocks as shown in Figure 1.7. Once again, assume that 
di ≥ iL − 2d is the minimum distance from an ith layer transmitter to vj and ci = 8i is the number 
of transmitters on the ith layer. Therefore,
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Therefore, the transmission rate from vi to vj

 Wij = Ω(d−βW ).

We use the same data collection scheme in Section 1.2.2. The total time we need to collect all 
the n packets is
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Thus, the achieved capacity of data collection under the generalized physical model is 

Ω (log )n W
−( )β

2 .

In summary, the bounds of data collection capacity can be summarized as the following:

Theorem 5

Under the generalized physical model [25], the capacity of data collection in random sensor net-

works is between Ω (log )n W
−( )β

2  and O((log n) W ).

1.3 Data Collection in Arbitrary Sensor Networks
We have studied the capacity of data collection on large-scale random WSNs. However, all 
results are based on a strong assumption that sensors are deployed randomly in an environment 
and the number of nodes n must be extremely large. Such an assumption is useful to simplify 
the analysis and derive nice theoretical limits, but may be invalid in many practical sensor 
applications. In most of the practical sensor applications, the sensor network is not uniformly 
deployed and the number of sensors may not be as huge as in theory. Therefore, it is necessary 
to study the capacity of data collection in an arbitrary network. In this section, we consider 
an arbitrary WSN in which n sensors and a single sink s are arbitrarily deployed in a finite 
geographical region. Figure 1.2 illustrates the difference between a random network and an 
arbitrary network.

1.3.1 Data Collection under the Protocol Model
Recall that the upper bound of data collection capacity in random networks is W. Obviously, this 
upper bound also holds for any arbitrary networks because sink s cannot receive at a rate faster 
than W due to the fixed transmission rate at each link. Therefore, we now introduce a simple 
breadth first search (BFS) tree-based data collection scheme to achieve capacity in the same order 
of the upper bound, that is, Θ(W ). The data collection method includes two steps: data collection 
tree formation and data collection scheduling.

1.3.1.1 Data Collection Tree: BFS Tree

The data collection tree used in our method is a classic BFS tree rooted at the sink s. The time 
complexity to construct such a BFS tree is O(|V | + |E|). Let T be the BFS tree and v vl

c
l

1 , ,…  be all 
leaves in T. For each leaf vi

l , there is a path Pi from itself to the root s. Let δP
j

i v( )  be the number 
of nodes on path Pi that are inside the interference range of vj (including vj itself). Assume the 
maximum interference number Δi on each path Pi is max{ ( )}δP

jvi  for all vj ∈  Pi. Hereafter, we 
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call Δi path interference of path Pi. Then, we can prove that T has a nice property that the path 
interference of each branch is bounded by a constant.

Lemma 6

Given a BFS tree T under the protocol model [26,27], the maximum interference number Δi on 
each path Pi is bounded by a constant 8α2, that is, Δi ≤ 8α2.

Proof

We prove by contradiction with a simple area argument. Assume that there is a vj on Pi whose Δi > 
8α2. In other words, more than 8α2 nodes on Pi are located in the interference region of vj. Because 
the area of interference region is πR2, we consider the number of interference nodes inside a small 
disk with a radius of r

2
 (see Figure 1.8 for illustration). The number of such small disks is at most 

π
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2
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=  nodes 

inside a single small disk with radius r
2

. In other words, three nodes vx, vy, and vz on the path Pi 

are connected to each other as shown in Figure 1.8. This is a contradiction with the construction 
of the BFS tree. As shown in Figure 1.8, if vx and vz are connected in G, then vz should be visited 
by vx not vy during the construction of the BFS tree. This finishes our proof.

1.3.1.2 Branch Scheduling Algorithm

We now illustrate how to collect one snapshot from all sensors. Given the collection tree T, our 
scheduling algorithm basically collects data from each path Pi in T one by one.

vj vy
vz

vx

R

Pi

r/2

s

Figure 1.8 Proof of Lemma 6: on a path Pi in BFS tree T, the interference nodes for a node vj is 
bounded by a constant.
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First, we explain how to schedule the collection on a single path. For a given path Pi, we can use Δi 
slots to collect one unit of data in the snapshot at the sink (see Figure 1.9 for illustration). In this figure, 
we assume that R = r, that is, only adjacent nodes interfere with each other. Thus, Δi = 3. Then, we color 
the path using three shades as in Figure 1.9a. Notice that each node on the path has unit data to trans-
fer. Links with the same color are active in the same slot. After three slots (Figure 1.9d), the leaf node 
has no data in this snapshot and the sink received one unit of data from its child. Therefore, to receive all 
data on the path, at most Δi × |Pi| time slots are needed. We call this scheduling method path scheduling.

Now, we describe our scheduling algorithm on the collection tree T. Remember that T has c 
leaves, which define c paths from P1 to Pc. Our algorithm collects data from path P1 to Pc in order. 
We define the ith branch Bi as part of Pi from vi

l  to the intersection node with Pi+1 for i = (1, c − 1) 
and cth branch Bc = Pc. For example, in Figure 1.10b, there are four branches in T: B1 is from vl

1  
to va, B2 is from vl

2  to s, B3 is from vl
3  to vb, and B4 is from vl

4  to s. Notice that the union of all 
branches is the whole tree T. Algorithm 1 (in Figure 1.11) shows the detailed branch scheduling 
algorithm. Figure 1.10c through j gives an example of scheduling on T. In the first step (Figure 
1.10c), all nodes on P1 participate in the collection using the scheduling method for a single path 
(for every Δ1 slot, sink s receives one unit of data). Such a collection stops until there is no data in 
this snapshot on branch B1 (as shown in Figure 1.10d). Then step 2 collects data on path P2. This 
procedure is repeated until all data in this snapshot reaches s (Figure 1.10j).

1.3.1.3 Capacity Analysis

We now analyze the achievable capacity of our data collection method by counting how many 
time slots the sink needs to receive all data in one snapshot.

Theorem 6

The data collection method based on path-scheduling in the BFS tree can achieve a data collection 
capacity of Θ(W ) at the sink [26,27].

Proof

In Algorithm 1, the sink collects data from all c paths in T. In each step (lines 3 and 4), data 
are transferred on path Pi and it takes at most Δi × |Bi| time slots. Recall that path scheduling 

Data
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Figure 1.9 Scheduling on a path: after Δi slots, the sink obtains one set of data.
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Figure 1.10 Illustrations of our scheduling on the data collection tree T.
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needs at most Δi × k time slots to collect k packets from path Pi. Therefore, the total number of 

time slots needed for Algorithm 1, denoted by τ, is at most 
i

c

i iB
=

∑ ×( )
1

∆ . Because the union 

of all branches is the whole tree T, that is, 
i

c

iB n
=

∑ =
1

, τ ≤ ×( ) ≤ ×( ) =
= =

∑ ∑
i
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i i

i
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iB B n
1 1

∆ ∆ ∆! !

 
. 

Here, ! "∆ ∆ ∆= max{ , , }1 c . Then, the delay of data collection D t nt= ≤τ !∆ . The capacity 

C nb
D

nb
nt

W= ≥ ≤! !∆ ∆
. From Lemma 6, we know that !∆  is bounded by a constant. Therefore, the 

data collection capacity is Θ(W ).
Remember that the upper bound of data collection capacity is W; thus, our data collection 

algorithm is order-optimal. Consequently, we have the following theorem.

Theorem 7

Under the protocol and disk graph models [26,27], data collection capacity for arbitrary WSNs 
is Θ(W ).

1.3.2 Data Collection under the General Graph Model
In previous parts of this chapter, our collecting algorithm and analysis was based on a disk graph 
model in which two nodes could communicate if and only if their distance was less than or equal 
to the transmission range r. However, a disk graph model is idealistic because, in practice, two 
nearby nodes may be unable to communicate due to various reasons such as barriers and path fad-
ing. Therefore, in this subsection, we consider a more general graph model G = (V, E) in which V 
is the set of sensors and E is the set of possible communication links. Every sensor still has a fixed 
transmission range r such that the necessary condition for vj to correctly receive the signal from vi 
is ||vi − vj|| ≤ r. However, ||vi − vj|| ≤ r is not the sufficient condition for an edge vivj ∈  E. Some links 
do not belong to G because of physical barriers or the selection of routing protocols. Thus, G is a 
subgraph of a disk graph. Under this model, the network topology G can be any general graph (for 
example, setting r = ∞ and putting a barrier between any two nodes vi and vj if vivj ∉  G).

Algorithm 1 Branch Scheduling on BFS Tree

Input: BFS tree T rooted at s.
1: for each snapshot do
2: for t = 1 to c do
3: Collect data on path Pi. All nodes on Pi transmit data towards the sink s using path scheduling.
4:  The collection terminates when nodes on branch Bi do not have data for this snapshot. The total slots used 

are at most ∆i ∙ |Bi|, |Bi| is the hop length of Bi.
5: end for
6: end for

Figure 1.11 Branch-scheduling algorithm on a BFS tree.
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In the general graph model, the capacity of data collection could be W
n

 in the worst case. We 

consider a simple straight-line network topology with n sensors as shown in Figure 1.12a. Assume 
that the sink s is located at the end of the network and the interference range is large enough to 
cover every node in the network. Because the transmission on one link will interfere with all the 
other nodes, the only possible scheduling is transferring data along the straight-line via all links. 

The total time slots needed are n n( )+ 1
2

, thus the capacity is at most 
nb

n n t

W
n( )+

= ⎛
⎝⎜

⎞
⎠⎟1

2

Θ . Notice 

that in this example, the maximum interference number Δ of graph G is n. It seems the upper 
bound of data collection capacity could be W

∆
. We now show an example whose capacity can be 

much larger than W
∆

. Again, we assume all n nodes with the sink interfering with each other. The 
network topology is a star with the sink s in the center, as shown in Figure 1.12b. Clearly, a sched-
uling that lets every node transfer data in order can lead to a capacity W, which is much larger 
than W W

n∆
= . From these two examples, we find that the capacity problem for the general graph 

model is more complex. Next, we analyze the upper and lower bounds of the collection capacity 
under the protocol model for the general graph model.

1.3.2.1 Upper Bound of Collection Capacity

We first present a tighter upper bound of data collection capacity for the general graph model 
than the natural one W. Consider all packets from one snapshot, we use pi to represent the packet 
generated by sensor vi. For any vi, let l(vi) be its level in the BFS tree rooted at the sink s (which is 
the minimum number of hops required for packet pi or a packet at vi to reach s). We use D(s,l) to 
represent a virtual disk centered at the sink node s with a radius of hop distance l. The critical level 
(or the critical radius) l* is the greatest level l such that no two nodes within l level from the sink 
node s can receive a message in the same time slot, that is, l* = max{l|∀vi, vj ∈  D(s,l) cannot receive 
packets at the same time}. The region defined by D(s,l*) is called the critical region (see Figure 1.13 
for illustration). For any packet pi originating at node vi, we define
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Figure 1.12 Two extreme cases in general graph models: (a) straight-line topology and (b) star 
topology.
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Here, λi* gives the minimum number of hops needed to reach the sink s after packet pi reaches 
the critical region around s. Let λ λ* *= max { }i i . Then, we can prove the following lemma on the 
lower bound of delay for data collection.

Lemma 7

For all packets from one snapshot [27], the delay to collect them at sink s

 
D t

i

i≥ ∑λ*.
 

Proof

It is clear that the critical region around sink s is a bottleneck for the delay. Any packet inside the 
critical region can only move one step at each time slot. First, the total delay must be larger than 
the delay, which is needed for the case in which all packets originating from outside the critical 
region are just one hop away from the critical region. In other words, assume that we can move all 
packets originating from outside the critical region to the surrounding area without spending any 
time. Then, each packet pi needs λi* time slots to reach the sink. By the definition of the critical 
region, no simultaneous transmissions around the critical region (one hop away from it) can be 
scheduled in the same slot. Therefore, the delay is at least the summation of λi*.

Let ∆* =
∑ i

i

n

λ*
, we have a new upper bound of data collection capacity, C W W≤ ≤

∆* . 

Notice that Δ* ≥ 1 and it represents the limit of scheduling due to interference around the sink 
(and its critical region).
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Figure 1.13 Illustration of the definition of the critical region, that is, l*. The gray area is the 
critical region, where no two nodes can receive a message in the same time slot due to interfer-
ence around s. Critical region around sink s (a) and a tree view of the critical region (b).


	
	




