
Patrick Felicia
Waterford Institute of Technology, Ireland

Handbook of Research
on Improving Learning
and Motivation through
Educational Games:
Multidisciplinary Approaches

Volume I

Handbook of Research on Improving Learning and Motivation Through Educational
Games : Multidisciplinary Approaches / Patrick Felicia, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book provides relevant theoretical frameworks and the latest empirical research findings on game-based
learning to help readers who want to improve their understanding of the important roles and applications of educational
games in terms of teaching strategies, instructional design, educational psychology and game design”--Provided by
publisher.
 ISBN 978-1-60960-495-0 (hardcover) -- ISBN 978-1-60960-496-7 (ebook) 1. Educational games. 2. Simulation games in
education. 3. Cognitive learning. 4. Learning, Psychology of. I. Felicia, Patrick.
 LB1029.G3H36 2011
 371.33’7--dc22
 2010054437

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Myla Harty
Production Coordinator: Jamie Snavely
Typesetters: Michael Brehm and Milan Vracarich, Jr.
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

1036

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 48

INTRODUCTION

An Algorithm is defined as “a sequence of compu-
tational steps that takes a value, or set of values,
as input and produces a value, or set of values, as
output” (Corner & Leiserson, 2001). Algorithms

are at the heart of every nontrivial computer ap-
plication. Every computer scientist, every profes-
sional programmer, and every computer science
student should know about basic algorithms and
generic data structures. Moreover, teaching al-
gorithms is one of the main activities that takes
place in the most of computer science classes.

Sahar Shabanah
King Abdul-Aziz University, Saudi Arabia

Computer Games for
Algorithm Learning

ABSTRACT

Data structures and algorithms are important foundation topics in computer science education. However,
they are often complex and hard to understand. Therefore, this chapter introduces a new learning strategy
that benefits from computer games’ popularity and engagement to help students understand algorithms
better by designing computer games that visualize algorithms. To teach an algorithm, an educational
computer game, namely an Algorithm Game must have a game-play that simulates the behavior of the
visualized algorithm and graphics depict the features of its data structure. Algorithm games attract
students to learn algorithm using active engagement, enjoyment, and internal motivation. Algorithm
Games attributes and genres that make them suitable to visualize algorithms have been specified. Various
concepts in computer game design have been applied in the development of several algorithm games
prototypes for algorithms, such as Binary Search, Bubble Sort, Insertion Sort, Selection Sort, Linked
List, and Binary Search Tree Operations.

DOI: 10.4018/978-1-60960-495-0.ch048

1037

Computer Games for Algorithm Learning

Algorithms usually model complicated con-
cepts, refer to abstract mathematical notions,
or describe complex dynamic changes in data
structures to solve relatively difficult problems.
Consequently, teaching algorithms is a challenging
task facing computer science instructors, requiring
much explaining and illustrating. Teaching aids
other than chalkboard and view-graph are always
needed to help students learn and understand
algorithms better (Baecker, 1998). Researchers
have been trying to find the best way to learn
and teach algorithms. One of the best known ap-
proaches, known as Algorithm Visualization, uses
graphics, sounds, and animations to communicate
how algorithms work (Eades & Zhang, 1996).

Since the production of the movie Sorting
Out Sorting (Baecker & Sherman, 1981), a
great number of algorithm visualization systems
have been built with the promise of improving
algorithm learning. However, their promise as
helpful educational tools is mostly unsatisfied.
Many researchers, who conducted experiments
to determine the efficiency of existing algorithm
visualization systems in teaching algorithms,
have reported unpromising results. For example,
(Badre et al., 1992), in their evaluation of algorithm
visualization systems as instructional aids, found
that there is no evidence that algorithm visualiza-
tion systems really enhance the understanding of
algorithms, despite the learners’ interest to use
these systems. Moreover, a study on algorithm
visualization systems efficiency concluded that
algorithm animations have unreliable effects on
student understanding of algorithms (Stasko et
al., 1993). In addition, (Byrne et al., 1996) state,
“the benefits of animations are not obvious.” In a
meta-study of over twenty empirical experiments
conducted to assess existing algorithm visual-
ization systems, (Hundhausen & Brown, 2002)
describe algorithm visualization systems as hav-
ing “failed to catch on in mainstream computer
science education,” and conclude that “studies in
which students merely viewed visualizations did
not demonstrate significant learning advantages

over students who used conventional learning
materials.”

The failure of current algorithm visualization
systems as effective educational tools results for
two main reasons. First, the developers of most
algorithm visualization systems usually focus on
graphics and sound as opposed to pedagogical,
issues in their designs (Stern et al., 1999). Second,
a small number of algorithm visualization systems
allow learners to interact effectively with their
displayed visualizations despite the importance of
such engagement. In fact, algorithm visualization
systems become very successful when engaging
students in the process of learning (Hundhausen
et al., 2002) since “what the students do, not what
they see, has the greater impact on learning”
(Hundhausen & Douglas, 2000). Moreover, the
more learners interact with algorithm visualization
systems, the better they understand the algorithms
these systems visualize (Naps, 2005).

Computer Games are software systems that
involve interaction with a user interface to gen-
erate visual feedback on a computer or a video
device and utilize many elements, such as fun,
play, winning/losing, and competition. Computer
games that involve learning of certain knowledge
are called Educational Computer Games (Wolf,
2002). Despite the frustration with educational
computer games in the past; recently, they re-
emerged as Serious Games, which have serious
purposes, such as training, advertising, simulation,
and education (Nielsen, 2005). (Chamberlin,
2003) describes computer games to have many
roles, such as “tutoring, amusement, exploring new
skills, promoting self-esteem, drill and practice, or
creating a change in attitudes.” Computer games
fully interact with players and encourage them to
think and act. Furthermore, according to (Rieber,
1996), “playing computer games involves active
engagement” because computer games support
all components of flow (Jones, 1998) as defined
by (Csikszentmihalyi, 1993). In fact, recent re-
search shows that computer games build content
and activities into high levels of motivation and

1038

Computer Games for Algorithm Learning

interest that are useful in reinforcing a wide variety
of learning values (Gee, 2004).

Given that there is an increasing correlation
between the level of student learning and engage-
ment in algorithm visualization systems (Grissom
et al., 2003), and given that computer games fully
interact with players, we address the shortness
in current algorithm visualization systems by
developing computer games, namely Algorithm
Games that visualize and teach algorithms. Our
approach benefits from the computer games active
engagement, intrinsic motivation, popularity, and
entertainment to maximally motivate and engage
students in algorithm learning.

In the remaining of this chapter: the motiva-
tion of this research is explained; then, several
algorithm visualization systems are compared
according to their level of engagement including
the proposed approach. Next, algorithm games are
defined and specified in more details. Moreover,
concepts related to computer games design in
general are described, and how those terms can
be applied to design our Algorithm Games is il-
lustrated. Finally, example prototypes of algorithm
games are outlined.

MOTIVATION

Is there a need for another Algorithm Visual-
ization system? Over twenty years, many algo-
rithm visualization systems have been produced.
However, in their effort to build a wiki for current
algorithm visualization systems, (Shaffer et al.,
2007) searched and analyzed hundreds of visu-
alization systems and found that “most existing
algorithm visualizations are of low quality and
the content coverage is skewed heavily toward
easier topics.” Still, positive about visualizations
in general, Shaffer et al. conclude, “while many
good algorithm visualizations are available, the
need for more and higher quality visualizations
continues. There are many topics for which no
satisfactory visualizations are available. Yet, there

seems to be less activity in terms of creating new
visualizations now than at any time within the
past ten years.”

Why use computer games to visualize algo-
rithms? Besides active engagement, computer
games have many features that motivate their use
for education in general and for algorithms learn-
ing in particular as explained in the following.

• Computer games are popular. Computer
games have been broadly played all over
the world by adolescents and young
adults. In particular, the typical college
student spends half the time reading that
s/he spends on playing computer games
(Randel et al., 1992). Therefore, the use of
computer games for teaching today’s stu-
dents is a good method.

• Computer games are based on intrinsic mo-
tivation. Players spend considerable time
in learning and playing computer games
solely for the sake of playing. Therefore,
playing computer games is an intrinsi-
cally motivating activity, in which people
engage for no reward other than the in-
terest and enjoyment that accompanies it.
(Malone, 1980) stress on the importance of
Intrinsic motivation in improving learning.
Moreover, (Dempsey et al., 1993) state,
“games result in significantly higher levels
of motivation, reduce training time, and
may improve retention of what is learned.”
As a result, the use of computer games can
motivate students to learn algorithms and
enhance their comprehension.

• Computer games simplify evaluation.
(Thiagarajan, 1978) state that games can
be used as performance tests “for individ-
ual evaluation of transfer and application”
of acquired knowledge; this use of games
is “obviously superior to any paper-and-
pencil test and is easier to administer.” In
short, students understanding of algorithms
can be evaluated using computer games

1039

Computer Games for Algorithm Learning

that simulate and imitate the behavior of
those algorithms.

• Computer games utilize entertainment.
(Garvey, 1990) defines playing games as
“pleasurable, spontaneous, and volun-
tary.” Moreover, (Gee, 2003) describes the
knowledge earned by playing games as
“the cycle of expertise” that gives people
pleasure. Importantly, (Chamberlin, 2003)
adds, “attainment of educational outcomes
can be combined with voluntary participa-
tion in play.” Therefore, the use of comput-
er games, can convert an unpleasant and te-
dious operation of algorithm learning into
an enjoyable and interesting experience.

• Computer games add emotional element.
Events that are accompanied by intense
emotions result in long-lasting learning,
such as training games, simulations, and
role-plays that add an emotional element
to learning (Thiagarajan, 2003).

RELATED WORK

(Naps et al.,2002) define six different forms of
learner engagement with an algorithm visualiza-
tion technology. The first form of engagement
is “no viewing,” meaning no visualization tech-
nology is used at all. The remaining five forms
construct the Active Engagement Taxonomy:
viewing the visualization passively, responding
by answering questions related to the presented
visualization, changing the visualization data or
some other features, constructing visualizations
of algorithms under study, and presenting the
visualization to an audience for feedback and
discussion. Next, we review some examples of
current algorithm visualization systems by clas-
sifying them according to the type of engagement
they support.

Sorting Out Sorting (SOS) is the first well-
known algorithm visualization system, which has
been produced by (Baecker & Sherman,1981).

It is a 30-minutes color, sound film that uses
animations to explain three sorting algorithms:
insertion, exchange, and selection sorts. The film
uses bars and single-digit numbers to represents
data items and colors to distinguish between sorted
and unsorted items. However, Brown Algorithm
Simulator and Animator (BALSA), which was
created in 1984 by (Brown & Sedgewick, 1984),
is the first real-time, interactive algorithm visu-
alization system that allows learners to interact
with the visualized algorithm. It provides the user
with some kind of control over the visualization
using two types of primitives: Display Primitives
that allow the user to create, size, and position the
algorithm and Interpretive Primitives that allow
the user to start, stop, slow down, or even run an
algorithm backward. A recent 2007 algorithm vi-
sualization system Algorithm Explorer, uses three-
dimensional objects to represent common data
structures and animations to visualize algorithms,
which consists of three main components: (1) User
Interface that enables the viewer to control how the
visualization played and displayed on the screen;
(2) Development Interface that help the developer
to construct and configure new visualizations; (3)
API that represent data blocks and arrays as 3D
boxes (Block World), graphs as spherical nodes
(Graph World), and recursion and general func-
tion tracing (Stack World) (Carson et al., 2007).
SOS allows learners to view the visualization
passively while BALSA and Algorithm Explorer
provide the user with some kind of control over
the visualization viewing process. Viewing is the
most common form of engagement that existing
algorithm visualization systems provide for their
users, other less supported engagement forms are
responding, changing, constructing, and present-
ing (Naps et al., 2002).

In 1991, Arin Korhonen built a visualization
system that supports responding by asking view-
ers to answer questions related to the presented
visualization. It consists of two parts: 1) Trakla
Server that automatically generates algorithm
exercises and assesses students returned answers;

1040

Computer Games for Algorithm Learning

2) Graphical Editor that presents the exercise text
graphically, offers interactive tools to solve it, and
generates the answer using the required textual for-
mat (Hyvonen &.Malmi., 1993). In 2001, Matrix
was designed to overcome the limitations in Trakla
graphical part. It is a general purpose framework
for building concept visualizations using visual
algorithm simulation, which allows the user to
manipulate data structures directly, as an algorithm
would do, by using the graphical user interface
facilities without writing any code (Korhonen et
al., 2001). Trakla2 (2003) is a newer version of
Trakla that supports the creation and publishing
of interactive exercises for data structures and
algorithms. MatrixPro (2004) is a successor of
Matrix, which was built to provide instructors with
an easy usage of the functionalities of Matrix with
lecture support and easy demonstration (Karavirta
et al., 2004). Created in 2005 Java Hosted Algo-
rithm Visualization Environment (JHAVE) is not
an algorithm visualization system. Rather, it is a
support environment for a variety of algorithm
visualization systems, giving these systems a
drawing context. It provides many features to
the visualizations, such as a standard set of VCR
(video recorder buttons)-like controls that let stu-
dents step through the algorithm’s visual display.
In addition, it has information and pseudo-code
windows where visualization designers can author
statically or dynamically generated content to help
explain the significance of what the student sees
in the algorithm’s graphical rendering. Moreover,
it provides stop-and-think questions, which can be
designed in a variety of formats to pop up at the
algorithm’s key stages, to support the responding
category of engagement (Naps, 2005).

Some algorithm visualization systems allow
their viewers to change the visualization data
or some other features. For example, GeoWin
(2002) is a visualization system that allows the
user to manipulate a set of actual geometric ob-
jects through the interactive interface (Bäsken
& Näher, 2002). Another system, CATAI (2002),
enables the user to invoke some methods on the

running algorithm. In terms of method invoca-
tions, it is possible to directly access the content
of the data structures or to execute a piece of code
encapsulated in an ordinary method call (Cattaneo
& Ferraro-Petrillo, 2002).

Tango (1989) and its successor XTango (1992)
were developed by John Stasko to support the
constructing of algorithm animations using API
calls into a C implementation of the algorithm.
However, such animations require explicit place-
ment and low-level setup of every component of
the animation (Stasko, 1992). In 1993, Stasko
developed two more systems: Polka to visualize
parallel algorithms (Stasko & Kraemer, 1993)
and Polka3D to explore the use of 3D graphics
(Stasko & Wehrli, 1993). In 1997, Samba, then
JSamba, was introduced as interactive animation
interpreters for Polka. They support the develop-
ing of animations via text scripts by including a
number of parameterized ASCII commands that
performed different animation actions. Thus, pro-
grams written in any programming language could
be animated simply by having them output Samba
commands at interesting event points (Stasko,
1997). ANIMAL was developed by Robling’s
in 2002 to support building animations using a
graphical editor. It generates a text script that can
then be modified by hand. It can be used to visual-
ize many representations through the composition
of low-level drawing and animation operations
not on the abstract data types represented in the
animation. ANIMAL animations can be generated
without actually implementing the algorithm in
code. It has specialized support for displaying
code or pseudo-code in the animation. It also has
a sizable online repository of animations that can
be retrieved through the interface itself (Rossling
& Freisleben, 2002). Algorithm Visualization Sto-
ryboarder (ALVIS) is an interactive environment
was built by (Hundhausen et al., 2004) to enable
students to quickly construct rough, unpolished
(low fidelity) visualizations in much the same
way they would do so with simple art supplies,
and interactively present those visualizations to

1041

Computer Games for Algorithm Learning

an audience. In ALVIS, users create storyboards
by using a graphics editor to cut out and sketch
visualization objects, which they lay out in the
“Storyboard View” by direct manipulation. They
then specify, either by direct manipulation or by
directly typing in Spatial Algorithmic Language
for StoryboArding (SALSA) commands how the
objects are to be animated over time. ALVIS-
Live! (2005) is a newer version of ALVIS that
implemented “What You See Is What You Code”
model to facilitate learner-constructed algorithm
visualizations. In this model, the line of algo-
rithm code currently being edited is reevaluated
on every edit, leading to the dynamic update of
an accompanying visualization of the algorithm
(Hundhausen & Brown, 2005).

A project called Algorithm Studio, which has
been designed by (Hundhausen, 2002), supports
presenting by allowing students to present their
own visual solutions, constructed using ALVIS,
of algorithm design problems to their instructors
in one-to-one sessions; then, to the entire studio.
Finally, at the end of the semester, the students
must present their solutions for an extra set of
design problems to a jury of instructors.

Alternatively, computer games support view-
ing, responding, changing, constructing, and pre-
senting, too. Specifically, most computer games
come in two modes: demonstration (demo) and
playing. In demo mode, players view how the
game is played passively, while in the playing
mode they respond to the game events. In addition,
several computer games provide options for their
players to change some features of their compo-
nents, such as their color, sound, and graphics.
Other games allow their players to construct new
components in the game environment and present
those to other players, such as the World of Craft
game. Moreover, according to (Rieber, 1996)
“play is usually voluntary, holds intrinsic motiva-
tion, involves active engagement, and contains a
make-believe quality.” Therefore, we introduce
“play” as a new form of active engagement that
maximally engages students through repetition,

challenge, and enjoyment in addition to combin-
ing all five forms of active engagement that have
been presented by Active Engagement Taxonomy.

ALGORITHM GAME SPECIFICATION

Algorithm Game Definition

(Thiagarajan, 1996) defines an Instructional Game
as an activity that has been designed specifically
for achieving learning objectives, and a Simulation
Game as a “correspondence between aspects of the
game and selected aspects of the reality.” In more
detail, “the rules of a game may reflect real-world
processes, and the game artifacts may represent
real-world products” (Thiagarajan, 1996). In fact,
simulation games replicate a model of reality as
observed by the designer. Accordingly, we can use
the definitions of the instructional and simulation
games to define our algorithm games as follows:
an algorithm game is a simulation instructional
game that has been designed to teach and visual-
ize an algorithm by imitating the behavior of the
algorithm and by using graphics that portray its
data structure features.

Algorithm Game Attributes

(Thiagarajan, 1996) suggests five important at-
tributes for instructional games to be effective and
productive in transferring information:

1. Conflict: players may compete or cooper-
ate with each other to overcome the game
obstacles and win.

2. Control: the rules of how the game is played
differ in hardness and inflexibility from game
to another.

3. Closure: reveals how the game ends; effi-
cient games must apply several conditions for
closure, allowing diverse groups of players
to win.

1042

Computer Games for Algorithm Learning

4. Contrivance: elements of the game that
induce or reward players to increase their
degree of enjoyment and playfulness.

5. Competency: assist players to develop their
skills in many areas, can be used to improve
players knowledge or problem-solving skills.

(Malone, 1983) describes four game properties
that increase the motivation of the players:

1. Challenge: includes granting the user un-
certain outcomes, obvious and personally
meaningful goals, and varying and appropri-
ate difficulty levels.

2. Fantasy: includes extrinsic fantasy, in which
the user’s actions determine what happens
in the game, and intrinsic fantasy, in which
the fantasy provides feedback to the user as
well.

3. Curiosity: yields from environments that
are neither too complicated nor simple, with
appropriate graphics, music, and animation.
Surprise and increasingly complex tasks also
encourage curiosity.

4. Control: giving the player full control on
the game and some of its features.

Considering Malone and Thiagarajan game
attributes, we define the following common at-
tributes and features for our algorithm games:

1. The algorithm game can be created either by
designing a totally new game or by modify-
ing the game-play of an existing game to
simulate the algorithm steps. For example,
we have modified the Pong game to visual-
ize the binary search algorithm by making
one player uses a ball and a paddle to hit a
set of boxes instead of two players hitting
the ball against each other (Section Binary
Search Game Prototype). On the other hand,
we have created a new game to visualize the
minimum spanning tree of a graph, which

requires the player to travel between several
cities in the least time.

2. The algorithm game must be simple, not
complicated, and focused on simulating the
algorithm, so students do not lose concen-
tration and become distracted. However, it
must include challenging tasks and goals to
enhance the self-esteem of the student.

3. The algorithm game should challenge the
player by setting clear goals with appropri-
ate difficulty levels and by giving clear and
encouraging feedback. For example, all
algorithm game prototypes that have been
developed have several levels with increas-
ing difficulties.

4. The information in the algorithm game
should be complex and unknown to increase
player curiosity.

5. The game must give the most control to
players by providing many options to cus-
tomize it and increase player imagination
and fantasy.

6. The algorithm game graphics must depict the
features of the data structure of the visualized
algorithm. For example, if the data structure
is an array, we can use a deck of cards to
visualize it since the cards have values and
can be arranged sequentially to simulate the
array elements; for the tree data structure,
we can use an actual tree with leaves that
represent the numbers.

7. The game-play of the algorithm game must
simulate the behavior of the algorithm that
game is visualizing. For example, the Bubble
Sort Game Prototype (last section) does not
allow the player to uncover more than two
cards at the same time or swap non-adjacent
cards. In the Binary Search Game (last sec-
tion) if the player hits a non-middle box, he
loses one point.

8. To simplify the student assessment, the al-
gorithm game must keep a record for each
player progress in the game. Therefore, each
algorithm game prototype that have been

1043

Computer Games for Algorithm Learning

described in this chapter includes a Player
Report screen, which displays the time, date,
score, and the playing results (won/lost) of
the player entered name.

9. To support competition, algorithm game
must allow learners to compare their per-
formance with each other. Therefore, each
algorithm game prototype that have been
described in Chapter includes a High Scores
screens that displays the most five high scores
achieved among all players.

Algorithm Games Genres

Game genre distinguishes one type of game-play
from another. Genres are mainly focused one
style of interaction (Apperley) and thus provide
a good basis to find out whether the interaction
type influences the general structure of a game. In
this section, we will give an overview of the most
important game genres by presenting a high-level
overview of the different game genres (Crawford,
1996). The most important game genres are as
follows:

• Ball and Paddle Games: a player controls
a paddle object that moves back and forth
on a single axis, such as Pong game.

• Bin ball Games: a player makes a ball hit
various parts of a play field to gather up
points.

• Fighting Games: players fight with
each other or with computer-controlled
characters.

• Maze Games: players must navigate
through a playing field, which is entirely
a maze.

• Shooter Games: the focus is primarily on
combat involving projectile weapons, such
as guns and missiles.

• Simulation Games: games imitate various
aspects of the life such as vehicle simula-
tion, sports simulation, card simulation,
biological simulation etc.

• Adventure Games: players solve various
puzzles by interacting with people or the
environment.

• Role-playing Game: the game-play is
centered on one or more avatars with char-
acteristics that evolve over the course of
the game.

• Strategy Games: the game-play requires
careful and skillful thinking and planning
in order to achieve victory.

• Board Games: games which are similar to
board games in their design and play even
if they did not previously exist as board
games, such as Backgammon, Othello,
Checkers, and Chess.

(Thiagarajan, 1996) specifies several game
genres that can be used in designing instructional
games such as card, verbal, solitaire, quiz, and
board games. In particular, an algorithm game
can be designed of any game genre depending on
the type of the data structure and the algorithm it
visualizes. For example, in last section, we give
prototypes of algorithm games that have been
designed as board games, such as Bubble Sort
and Insertion Sort Games in addition to algorithm
games that have been designed as ball and paddle
games, such as Binary Search Game.

COMPUTER GAME DESIGN

A computer game features some kind of world,
objects and characters in this world with different
kind of properties and behaviors, and rules that
make up the game and control how these objects
interact with each other.

Educational Games Design

At the end of her research on educational games
effects, and after reviewing many theories on
designing such games, (Chamberlin, 2003) gives

1044

Computer Games for Algorithm Learning

ten suggestions to be considered when designing
games for learning purposes:

1. Interface design is a key consideration:
game interfaces should provide user-guided
learning, help when required, and navigation
assistance through the game.

2. Games should incorporate feedback through-
out play: feedback supports the players’
advancement during the game. The use of
scores and rewards can support players need
for excitement.

3. Environments and characters are important:
use of fancy graphics, professionally pro-
duced animation, and sounds are important
to users, but games do not have to exaggerate
it.

4. Games should engage users with activity:
player involvement and decision making
within the game should be increased.

5. Build challenge into game play: provide ris-
ing complexity levels, increased problems
to solve, or competition, without exceeding
the players’ abilities.

6. Offer users control throughout activities:
contribute not only to users’ engagement,
but also to permit players to change the play
environment to meet their needs.

7. Build on user’s familiarity of other games,
characters, and content: while familiarity
increases player’s satisfaction, also novel
and unusual material are encouraged.

8. Recognize the importance of variety: players
should be granted different types of oppor-
tunities for utilizing their different skills and
interests.

9. Repeat educational information: instructive
information should be given in various places
with several learning approaches.

10. Involve users in design process: this is
achieved by regular testing, infrequent
discussions, or by benefiting from players
during as design associates.

These suggestions are taken in account when
designing our algorithm games to teach algorithms,
as shown in the following sections.

Game Elements

When it comes to game design, two types of ele-
ments can be identified: external and internal ele-
ments. External elements are related to the design
of the game appearance. According to a research
about the game industry conducted by Microsoft
(xna), there are several important elements that
affect the appearance of games: Meshes and Ma-
terials, Audio, Video, Animation, User Interface,
and Worlds / Levels. Internal elements are related
to the internal or core design and implementation of
the game. Current research in game design (Schell,
2008) distinguishes the following four elements:

1. The interaction with the player determining
how to control the game and what feedback
is provided.

2. The objects that make up the game world,
with specific behavior and properties.

3. The rules that govern the core mechanics of
the game and determine what the player can
and cannot do.

4. A storyline is not present in all games, but
in some genres, it takes a prominent place
(action, adventure).

Game Design Document

Prepared by game designers, the game design
document contains information about the core
elements that make a game. One of the impor-
tant parts of any design document is the game
mechanics, which describes the game-play of
the game. It describes how the game is played,
the flow of the game, and provides a detailed
information on the movement of every object in
the game. A second section of the game design
document gives details on the story of the game,
or the levels the user has to go through. Another

1045

Computer Games for Algorithm Learning

section of the design document is the setting of
the game, which is supported by the story, the art
work (graphics), the video, and the sound used
throughout the game. All game design documents
contain some details on how the game should
feel, what the overall mood is and at least some
impression sketches or concepts art of the game.
Besides defining the game mechanics, the story
and setting, the interaction with the user must be
determined in the game design document. How the
user controls the game world; what are the GUI
elements within the game, like Head-Up-Displays
(HUD), menus, and help screens must all be speci-
fied. These specifications mostly define how the
user controls the system surrounding the game:
saving, loading, (re) starting the game, changing
some settings, and so on (Dobbe, 2007).

Game General Design Elements

In a crash course about game design, (Packard,
2001) defines eight general game design elements
that can be used to describe a game prototype:

1. Game Idea: a game must have an idea.
2. Game Goal: a game must have a clearly

defined goal. This goal must be expressed
in terms of the effect that it will have on the
player.

3. Game Topic: the topic is the means of
expressing the goal, the environment in
which the game will be played. It is the
concrete collection of conditions and events
through which the abstract goal will be
communicated.

4. Game Start: what are the game startup
screens? What are the startup parameters?
Where are the characters? What messages,
if any, are on screen, and where? Is there an
introductory music?

5. Game Levels: how does the difficulty in-
crease? How does a level end? How does
the player know what level he is on?

6. Game Milestone Events: this refers to
points of the game at which the player is
rewarded or penalized. Milestone Events are
gauge to let players know they are on the
right (or wrong) track, and will encourage
(or discourage) them to keep going.

7. Game End: what happens when the player
loses? What happens when the player wins?
What happens when the player gets a high
score? Where does the player go when the
game is over? How does the player start a
new game?

8. Game Exit: what does player see when he
decides to exit the game?

GAME APPEARANCE DESIGN

Game Graphics Design

Game graphics are everything that contributes to
the visual appearance of the game, such as fonts,
(2D) Sprites, and (3D) Models. Some games
do not require any fonts at all; instead, they use
word textures for whatever messages they need,
or use the normal bios print routine. The graphics
that build the game world can be classified into
three types:

1. Background objects that do not move and are
not drawn on top of something else during
the game. Each object is defined by name,
description, size, and position.

2. Foreground objects that don’t move and
are drawn on top of everything else, such
as Get Ready Image, Game Over Image,
and animated logo. Each object is defined
by name, description, size, and position on
the screen.

3. Character objects that move and/or animate
on screen. They can be 2D Sprites or 3D
Models. Each character is defined by name,
description, color, size, texture, personality
traits, and movement options. Game charter-
ers may be divided into:

1046

Computer Games for Algorithm Learning

 ◦ A Player Character (PC): a fictional
character who is controlled by the
player.

 ◦ A Non-Player Character (NPC): a
character whose actions are not under
the player’s control, such as bystand-
ers, competitors, bosses, or may ex-
ist, to aid the player’s progress in the
game.

Game Sounds Design

An event is anything that causes playing one of
the game digital samples, such as the beginning
of the game, losing a life, or getting a high score.
The game goal-related events, such as GameOver
and HighScore events, are the milestone events,
while any events that are not related to the game
goals are the game-related events. There are two
types of game sounds:

1. Musical Sounds are played at milestone
events, and are not affected by any other
game-related events. Based on the type of
milestone event that triggers them, they fall
into three categories:
a. Theme Music: five to ten or more

seconds set the tone of the game. They
are played at and during major mile-
stone events, such as TitleSequence,
StartNewGame, NewLevel, and
YouDie.

b. Background Music: begin at mile-
stone events, like StartGame, or
Intermission, and continue to play
throughout the event.

c. Musical Tag: very short samples, usu-
ally two seconds or less occur at minor
milestone events, like HitHighScore.

2. Sound Effects (SFX) are related to game-
events where something happens in the
game that isn’t really Milestone related, but
is important enough that a sound effect need
to play for it, such as Hitting a Ball.

Game Screens Design

A game screen is a collection of visual and audio
components that describe the state of the game at
any one time during the game life cycle. Exemplars
of game screens are:

• Title Screen: players see this when they
first start the game.

• Self-running Demo: a demonstra-
tion of the game played without player
interference.

• About This Game Screen: gives informa-
tion about the game.

• Game Selection Screen (Main Menu):
displays available options to the player on
game startup, how the player gets there,
and how he gets out?

• Game Play Screen: displays the common
game parameters, such as scores, num-
ber of levels, and other information to the
player.

• Game Level Screen: displays one level of
the game.

The game screen design is a plan for how and
where things will be placed on the screen. There
are usually many things need to be placed on the
screen, such as the player’s score, number of lives
left, Game Logo, level number, etc. Each game
screen design must include the following items:

• Screen Title: name of the screen.
• Screen Description: what information

needs to be on it?
• Screen Layout: what goes where, and

how big it is in pixels?
• Screen Exit: what happens when this

screen is exited?
• Player Controls: whatever the player can

do on this screen, and how he does it. How
he calls up any menus, what he does to in-
teract with the game.

1047

Computer Games for Algorithm Learning

• Menus, Choices, and Functions: if this
screen has special menu options, what they
are, how the player changes those options,
and how the game will let him know of
those changes.

• Feedback Systems: what player informa-
tion is displayed on the screen, where it is,
how the player will access it.

Game Assets

The game assets are the game files that make up
the game content. These files include texture files
define the 2D sprites of the game, model files de-
fine the 3D models of game and their effect files,
which specify their appearance, font files define
the properties of the fonts used in the game, and
sound files determine the sound clips used in game.

Game Mechanics Design

Game mechanics describe flow of the game,
movement, and drawing order of every object
in the game, and needed procedures to achieve
game goals. The heart of the game mechanics is
the game loop. The game loop continually updates
the state of the game based on user input, in-game
conditions, and any other applicable condition and
renders it. This involves drawing to the screen,
playing appropriate audio, rumbling a controller,
and providing any other form of output to the
user. Besides the game loop, the game mechan-
ics includes the game user interface design, the
game screens structure, and the game-play rules.

Game Properties

What are the game name, number of levels, number
of the player lives, level time? How the current
level number, remaining lives, player score, and
level timer are calculated?

User Interface Design

A user interface is the mechanism a game uses to
get information to and from the player; generally,
it consists of two parts:

1. User Controls to be used by the player to
affect the game, including character move-
ment or actions, pull down menu choices,
and options screen controls.

2. Feedback System that conveys information
to the player, such as his Score Display,
Number of Lives, Level Number, Sound
Effects (SFX), and Visual Effects (FX).

The Game Input/Output is the player’s tactile
contact with the game. An excellent game offers
the player a large number of meaningful options
in addition to the choice of several input devices,
such as keyboard, joystick, gamepad, or mouse.
The Output Structure includes graphics that con-
vey the game information while supporting the
fantasy of the game in addition to sounds tell the
player what is going on in the game.

Game Screens Structure

A Finite State Machine (FSM) is a software ma-
chine that has a limited number of states that it
can be transitioned in and out of. Like the FSM,
the game transitions between many screens, at
the start of the game the Title screen is displayed
followed by a Main Menu screen. Then depending
on the player choice, the Playing or Options screen
is displayed. When the player wins or loses the
game, the related screen is displayed. Therefore, a
game can be represented as a finite state machine
where each game screen corresponds to a state a
game is in. A stack can be used to store the different
game screens to simplify the transition between
them. Using the stack Push() operation a game
screen like Pause can be easily displayed on top
of other screens and a screen can be removed by
a Pop() operation (Carter, 2009).

1048

Computer Games for Algorithm Learning

Game-Play

Game-play explains how the game is played, what
the controls are, what the game objects allowed
movements are, and how the player is going to
achieve the game goals.

ALGORITHM GAME DESIGN

Based on game design document, game general
design elements, game appearance design, and
game mechanics design sections; this section
introduces and defines an Algorithm Game Pro-
totype that serves as the design document for
an algorithm game by describing its key design
elements. Each Algorithm Game Prototype has
three sections: Algorithm Game General Design
Elements, Algorithm Game Appearance Design,
and Algorithm Game Mechanics Design.

Algorithm Game General
Design Elements

The algorithm game design elements that describe
an algorithm game prototype are as follows:

1. Game Idea: each algorithm game idea
visualizes an algorithm steps and its data
structure.

2. Game Goal: involves learning the visualized
algorithm.

3. Game Topic: shows the algorithm and its
data structure features.

4. Game Start: each algorithm game starts
by displaying one game level that includes
its graphic items. The level HUD default
attributes are Level <= Maximum Level
Number, Score= zero, Timer= Maximum
Level Time, and Lives= Maximum Player
Lives.

5. Game Levels: describes how the difficulty
increases, how a level ends. Each completed
level must achieve a learning sub-goal.

Moreover, each level has a specific play-
ing time. Each algorithm game has several
levels.

6. Game Milestone Events: many reward
and penalized points must be placed for the
game. The algorithm game milestone events
are the starting of a new level and losing of
one life.

7. Game End: the algorithm game ends when
the player either loses all his lives or com-
pletes all game levels successfully. If the
player loses the game, Lost screen and Main
Menu screen are displayed, respectively.
Otherwise, if the player wins the game, Won
screen, High Scores (if the Player Score is
high) screen, and Main Menu screen are
displayed respectively.

8. Game Exit: the algorithm game can be exited
from the Main Menu screen Exit button, the
X-button of the gamepad, the Escape button
of the keyboard, or from the close (or X)
button on the game window. Before clos-
ing the game window, the Credits screen is
displayed.

Algorithm Game Appearance Design

Graphics Design

The Algorithm Game Graphic Items define the
game entities or objects that make the game world.
Each graphic item is either a 2D Sprite or a 3D
Model with attributes, such as size, position, color,
texture, and name in addition to behaviors like
render, move, and update. Examples of graphic
items of a typical algorithm game are as follows:

• Node: animated item used to visualize one
node of the algorithm data structure, such
as Card, Box, and Domino.

• Collections: a set of similar nodes that
have been organized according to spe-
cific rules. A collection is used to visual-
ize an algorithm data structure, such as a

1049

Computer Games for Algorithm Learning

Deck of Cards, Map of Cities, and Pack of
Dominoes.

• Playing Tools: animated items used to
play the game, such as Ball, Paddle, and
Shooter.

• Buttons: non-animated graphic objects
used in the screens design.

Game Assets

Texture, fonts, models, effects, and sound files.

Algorithm Game Mechanics Design

Input Design

Input design handles the game input from the
mouse, keyboard, and gamepad. For each player
input event in the game, the required feedback
must be implemented.

Game Properties

Some of the game parameters are initialized at
the start of the game, such as name of the game,
maximum number of levels, maximum number of
the player lives, and maximum level time. Other
game attributes are calculated and displayed to
show the game current state such as player re-
maining lives, current level timer, player current
score, and current level number.

Game-Play

Game-play is responsible for implementing the
playing rules of the game according to the visual-
ized algorithm behavior.

The general game-play of an algorithm game
is as follows:

1. While playing, if (Current Level Timer ==
0), the current level ends.

2. If current level is lost, the Player Remaining
Lives is decreased by one.

3. If (Player Remaining Live > 0), the current
level is repeated;
1. else the game ends and the player loses

the game.
4. If current level is completed successfully,

the Current Level Number is increased by
one.

5. If (Current Level Number < Maximum
Levels Number), a new level is displayed;
1. else the player wins the game and the

game ends.

Screens Design

Each algorithm game has a set of default game
screens that are explained in the following:

1. Title Screen: displays the game title, logo,
and name.

2. Player Name Screen: displays an on screen
keyboard at the game start to input the player
name.

3. Main Menu Screen: displays the game
main menu options and handles the player
choices.

4. Start Level Screen: displays the start of
one game level for the player including the
level number.

5. Play Screen: displays the game to the player
to play, including a Head-Up-Display (HUD)
that shows the game properties, such as Level
Number, Remaining Lives, Game Name,
Player Score, and Level Timer.

6. Pause Screen: allows the player to stop and
resume the game at any time.

7. Exit Screen: allows the player to stop and
end the game at any time.

8. Won Level Screen: displays a “Level
Completed” message when the player wins
one level and asks the player to continue the
game; then, it displays the next level for the
player.

9. Lost Level Screen: displays the Remaining
Player Lives when the player loses one level

1050

Computer Games for Algorithm Learning

and asks the player to continue the game,
then repeats the same level for the player.

10. Won Game Screen: displays a won message
when the player wins the game.

11. Lost Game Screen: displays a lost message
when the player loses the game.

12. Options Screen: displays the game options
for the player.

13. Game Demo Screen: displays the self- run-
ning demo of the game.

14. High Scores Screen: shows the five high
scores achieved during the game by all
players.

15. Player Report Screen: displays a progress
report for the player for the last eight times,
the player played the game including Game
Result (Lost, Won), Score, Level Number,
Play Date, and Play Time.

16. Credits Screen: shows the game developers
names.

ALGORITHM GAMES PROTOTYPES

This section describes the design of several algo-
rithm games prototypes. At the beginning, each
section describes the algorithm behavior, which
has been simulated by the described prototype.
Then, the prototype components, such as the
general game design, game appearance design,
and game mechanics design, are detailed.

Binary Search Game Prototype

The binary search game is based on the original
Pong game, where the player hits a ball character
who moves around with a paddle (Kent, 2001).
Binary Search game, however, extends the original
Pong game to simulate the binary search algo-
rithm by adding an array of blocks, background
music, and a more interesting rule set, as it will
be presented throughout this section. The binary
search Algorithm finds the index of a specific
value (Search Number) in a sequential list of
sorted elements (array) by selecting the middle

element (median) of the array and comparing it
with the Search Number, then:

1. if (median > Search Number), the index of
the median-1 becomes the new upper bound
of the list;

2. else if (median < Search Number), the index
of the median+1 becomes the new lower
bound;

3. else if (median = Search Number), return
the index of the median.

The algorithm pursues this strategy iteratively
for the new list bounded by the middle element.
It reduces the search span by a factor of two each
time, and soon finds the Search Number index or
else determines that it is not in the list.

First– General Game
Design Elements

1. Game Idea: hitting an array of blocks with
a ball using a paddle.

2. Game Topic: the game is a modification of
Pong game.

3. Game Goal: simulating the binary search
algorithm.

4. Game Start: the game starts by displaying
one game level that includes a set of blocks
with their values hidden, Ball, and Paddle.
Besides the default attributes of the algo-
rithm game HUD, the level HUD includes
Search Number=random value and Search
Index=’ ‘. Game Levels: the game has sev-
eral levels; at each new level, the number of
blocks is increased to make the game more
challenging.

5. Game Levels: the game has several levels;
at each new level, the number of blocks is in-
creased to make the game more challenging.

6. Game End: default settings of the algorithm
game.

7. Game Milestone Events: default settings
of the algorithm game.

1051

Computer Games for Algorithm Learning

8. Game Exit: default settings of the algorithm
game.

Second– Game Appearance Design

• Game Graphics Items: 2D sprites, each
with name, texture, size, and position.
 ◦ Set of Blocks: each block has a value

to represent one element of the array.
 ◦ Ball: used to hit one block of the set

to reveal its value.
 ◦ Paddle: used to move the Ball to-

ward the blocks.
• Game Assets:

 ◦ Textures: Ball, Paddle, and Block.
 ◦ Sounds: LostBall, HitBall, LostLive,

LostGame, and WonGame.
 ◦ Fonts: Arial.

Third– Game Mechanics Design

• Game Properties: the default properties
are initialized as follows the Maximum
Level Number=3, Maximum Player
Lives=3, and Game Name=Binary Search.
Besides the default, the calculated proper-
ties include the Search Number.

• User Interface—Input Design: support-
ing keyboard, mouse, and Xbox gamepad.

• Game Screens Design: the game screens
are all default algorithm game screens.

• Game-Play: in addition to the general
playing rules that have been included in
each algorithm game, the specific playing
rules that simulate the algorithm steps are
as follows (Figures):
1) The player hits one block of the array

with the Ball, using the Paddle.
2) If the hit block is in the middle:

a) The Player Score is increased by
five points.

b) If (Search Number > hit block
value), the player plays on the
right section of the array;

i) else if (Search Number < hit block value),
the player plays on the left section of the array;

ii) else if (Search Number = hit block value)
or the Search Number is not found, the level ends.

3) Else if the hit block is not in the middle,
the Player Score is decreased by one
point.

4) If the level time ends without hitting
all middle blocks in the set, the player
loses the level.

5) At each new level, the number of the
blocks in the set, Level Timer, and
Level Number are increased.

Play Screen

• Figure 1 shows the Play screen with the
middle block value shown after hit by the
player using the Ball and the Paddle.

• Figure 2 shows other screen shot of the
game, the HUD items are Search Number=
16, Score=7, and Level=2. The progress of
the game as follows:
 ◦ When player hit (block=7) <Search

Number, the player went left,
 ◦ then when hit (block=11) <Search

Number, the player went left,
 ◦ then when hit (block =13) <Search

number, the player went left.

Binary Search Tree Game Prototype

Binary search tree is a data structure, which meets
the following requirements: it is a binary tree so
each node has at most two children; each node
contains a value, which is lesser than the values
of its right sub-tree and greater than the left sub-
tree values. The binary search tree operations are
search, add value, and remove value algorithms.

• Search Algorithm

1052

Computer Games for Algorithm Learning

1. Starting from the root, check whether
value in current node and searched
value are equal. If so, value is found.

2. Otherwise, if searched value is less
than the node’s value; if current node
has no left child, searched value does
not exist in the BST; otherwise, handle
the left child with the same algorithm.

3. If a new value is greater than the node’s
value; if current node has no right child,
searched value does not exist in the
BST; otherwise, handle the right child
with the same algorithm.

• Add Value Algorithm
1. Search for a place to put a new element;
2. Insert the new element to this place.

• Remove Value Algorithm

Figure 1. Play Screen (1) of Binary Search Game

Figure 2. Play Screen (2) of Binary Search Game

1053

Computer Games for Algorithm Learning

1. Apply the search algorithm to find the
parent of the node that has the value to
be deleted.

2. Then, there are three cases, which are
described below:
a. Node to be removed has no chil-

dren. In this case, the algorithm
sets corresponding link of the
parent to NULL and disposes the
node.

b. Node to be removed has one child.
In this case, the node is cut from
the tree and algorithm links single
child (with its sub-tree) directly to
the parent of the removed node.

c. Node to be removed has two
children. In this case, the algo-
rithm finds a minimum value in
the right sub-tree, replaces the
value of the node to be removed
with found minimum. Now, right
sub-tree contains a duplicate, so
the algorithm applies remove to
the right sub-tree to remove the
duplicate.

First– General Game
Design Elements

1. Game Idea: to build the binary search tree
given values one after another as fast as
possible.

2. Game Topic: building blocks environment.
3. Game Goal: to simulate add, search, and

remove operations of the binary search tree.
4. Game Start: the game starts by displaying

one game level that shows one node of the
tree with a given value. The level HUD in-
cludes all default attributes of the algorithm
game HUD.

5. Game Levels: the game has several levels;
at each new level, the number of the tree
nodes is increased to make the game more
challenging.

6. Game End: default settings of the algorithm
game.

7. Game Milestone Events: default settings
of the algorithm game.

8. Game Exit: default settings of the algorithm
game.

Second– Game Appearance Design

• Game Graphics Items:
 ◦ Nodes of the tree, each node having

a value.
• Game Assets:

 ◦ Textures: Node.
 ◦ Sounds: AddNode, RemoveNode,

Won, and Lost sounds.
 ◦ Fonts: Arial.

Third– Game Mechanics Design

• Game Properties: all default properties,
which are initialized as follows Maximum
Level Number=3, Maximum Player
Lives=3, Maximum Level Time=1 minute,
and Game Name=Binary Search Tree in
addition to default calculated properties.

• User Interface–Input Design: supporting
keyboard, mouse, and Xbox gamepad.

• Game Screens Design: the game screens
are all default algorithm game screens.

• Game-Play: in addition to the general
playing rules that have been included in
each algorithm game, the specific playing
rules that simulate the algorithm steps are
as follows:
1. The player must build a binary search

tree as fast as possible by inserting a
new node in its correct place in the tree.

2. If the player adds the node in its correct
place, the Player Score is increased by
five points; otherwise, the Player Score
is decreased by one point.

3. If the level time ends without build-
ing the tree, the player loses the level.

1054

Computer Games for Algorithm Learning

At each new level, the number of the
nodes, Level Timer, and Level Number
are increased.

The Linked List Game Prototype

Linked list is a very important dynamic data
structure. Basically, there are two types of linked
lists, single-linked list and double-linked list. In
a single-linked list, every element contains some
data and a link to the next element, which allows
us to keep the structure. On the other hand, every
node in a double-linked list also contains a link to
the previous node. Operations on a single-linked
list are traversal, inserting node, and removing
node algorithms.

• Traversal Algorithm: Beginning from the
head: (1) check, if the end of a list hasn’t
been reached yet; (2) do some actions
with the current node, which is specific
for particular algorithm; (3) current node
becomes previous and next node becomes
current. Go to the step 1.

• Inserting Node Algorithm: there are four
cases, which can occur while adding a node
to a linked list, as shown in the following:
1. Empty list: when list is empty, which is

indicated by (head = NULL) condition,
the insertion is quite simple. Algorithm
sets both head and tail to point to the
new node.

2. Add first: new node is inserted right
before the current head node, and can
be done in two steps: (a) update the
next link of the new node to point to
current head node; (b) update head link
to point to the new node.

3. Add last: new node is inserted right
after the current tail node, which can
be done in two steps: (a) update the
next link of current tail node to point
to the new node; (b) update tail link to
point to the new node.

4. General case: new node is always
inserted between two nodes, which are
already in the list. Head and tail links
are not updated in this case. Such an
insert can be done in two steps: (a)
update “previous” node link to point
to the new node; (b) update the new
node link to point to “next” node.

• Removing Node Algorithm: there are
four cases, which can occur while remov-
ing a node from a linked list, as shown in
the following:
1. When the list has only one node, which

is indicated by the condition that the
head points to the same node as the tail,
the removal is quite simple. Algorithm
disposes the node, pointed by head
(or tail) and sets both head and tail to
NULL.

2. Remove first: first node (current head
node) is removed from the list. It can
be done in two steps: (a) update head
link to point to the node next to the
head; (b) dispose removed node.

3. Remove last: last node (current tail
node) is removed from the list. It can be
done in three steps: (a) update tail link
to point to the node before the tail. In
order to find it, list should be traversed
first, beginning from the head; (b) set
next link of the new tail to NULL; (c)
dispose removed node.

4. General case: node to be removed is
always located between two list nodes.
Head and tail links are not updated in
this case. Such a removal can be done
in two steps: (a) update next link of
the previous node to point to the next
node, relative to the removed node; (b)
dispose removed node.

1055

Computer Games for Algorithm Learning

First– General Game
Design Elements

1. Game Idea: the main idea of the game is
building a chain of connected dominoes
according to the linked list add and remove
algorithms.

2. Game Topic: dominoes board game.
3. Game Goal: simulating linked list opera-

tions algorithms.
4. Game Start: the game starts by displaying

one game level that includes one uncovered
domino. The level HUD includes all default
attributes of the algorithm game HUD.

5. Game Levels: the game has several levels; at
each new level, the number of the dominoes
in the pack is increased to make the game
more challenging.

6. Game End: default settings of the algorithm
game.

7. Game Milestone Events: default settings
of the algorithm game.

8. Game Exit: default settings of the algorithm
game.

Second– Game Appearance Design

• Game Graphics Items:
 ◦ A pack of dominoes with their values

covered.
• Game Assets:

 ◦ Textures: 28 dominoes textures.
 ◦ Sounds: Won, and Lost sounds.
 ◦ Fonts: Arial.

Third– Game Mechanics Design

• Game Properties: all default properties,
which are initialized as follows: Maximum
Level Number=3, Maximum Player
Lives=3, Maximum Level Time=1 minute,
and Game Name=Single Linked List in ad-
dition to default calculated properties.

• User Interface–Input Design: supporting
keyboard, mouse, and Xbox gamepad.

• Game Screens Design: the game screens
are all default algorithm game screens.

• Game-Play: in addition to the general
playing rules that have been included in
each algorithm game, the specific playing
rules that simulate the algorithm steps is as
follows:
1. Depending on their values, the player

must build a chain of dominoes as
fast as possible in a fixed time, where
adjacent dominoes must have the same
values from each side.

2. Continuously, the player removes one
domino from the pack with a differ-
ent value and adds it to the dominoes
chain. The player must add and delete
dominoes until reaching the required
combination.

3. All dominoes are connected with each
other using a connector; if a domino
is added or deleted improperly, it falls,
and the Player Score is decreased by
one point; otherwise, when the domino
is added correctly the Player Score is
increased by five points.

4. If the level time ends without building
the chain, the player loses the level.

5. At each new level, the number of the
dominoes in the pack, Level Timer,
and Level Number are increased.

Bubble Sort Game Prototype

The Bubble Sort algorithm sorts an array of n
elements by looking at adjacent elements in the
array and putting them in order. It looks at the
first two elements, swaps them if necessary;
then it looks at the second and third elements,
swapping if necessary; then it looks at the third
and the fourth and so on. After one pass through
the array, the largest item will be at the end of
the array. Similarly, for another complete pass

1056

Computer Games for Algorithm Learning

through the array, the second largest item will be
in position. If n passes are made, all of the array
will be sorted.

First– General Game
Design Elements

1. Game Idea: sorting a deck of cards in a
fixed time.

2. Game Topic: card board game, such as
solitaire.

3. Game Goal: simulating bubble sort
algorithm.

4. Game Start: the game starts by display-
ing one game level that includes a deck of
unsorted, covered cards. The level HUD
includes all default attributes of the algorithm
game HUD.

5. Game Levels: the game has several levels;
at each new level, the number of cards is
increased to make the game more challeng-
ing. However, the timer value also increased
to create appropriate difficulty levels.

6. Game End: default settings of the algorithm
game.

7. Game Milestone Events: default settings
of the algorithm game.

8. Game Exit: default settings of the algorithm
game.

Second– Game Appearance Design

• Game Graphics Items:
 ◦ Deck of cards, each card having a

value.
 ◦ Swap button.

• Game Assets:
 ◦ Textures: 52 cards, 13 for each card

suit, Swap button, and card cover
textures.

 ◦ Sounds: LostLive, Won, and Lost
sounds.

 ◦ Fonts: Arial.

Third– Game Mechanics Design

• Game Properties: all default properties,
which are initialized as follows: Maximum
Level Number=3, Maximum Player
Lives=3, Maximum Level Time=1 minute,
and Game Name=Bubble Sort in addition
to default calculated properties.

• User Interface—Input Design: support-
ing keyboard, mouse, and Xbox gamepad.

• Game Screens Design: the game screens
are all default algorithm game screens.

• Game-Play: in addition to the general
playing rules that have been included in
each algorithm game, the specific playing
rules that simulate the algorithm steps is as
follows (Figures 6.8-6.13):
1. The player uncovers two adjacent cards

to see their values.
2. The player must compare the cards and

swap them, if they are not sorted.
3. If the player makes a correct swap

(cards were not in order before swap-
ping), the Player Score is increased by
five points; otherwise, it is decreased
by one.

4. If the level time ends without sorting
all cards in the deck, the player loses
the level.

5. At each new level, the number of the
cards in the deck, Level Timer, and
Level Number are increased.

Play Screen Shots

• Figure 3 shows the Play screen after the
player uncovered the first two adjacent
cards, HUD Score=0, since the second
card value less than the first card value, the
player must click on Swap button to swap
the cards.

1057

Computer Games for Algorithm Learning

• Figure 4 shows the cards after have been
swapped, HUD Score =5 and decreased
Time.

Selection Sort Game Prototype

The Selection Sort algorithm sorts an array of
numbers as follows: it finds the minimum value in

the list, swaps it with the value in the first position,
and repeats for the remainder of the list (excluding
the swapped elements at the beginning).

First– General Game
Design Elements

Same as Bubble Sort Game.

Figure 3. Play Screen of Bubble Sort Game shows Card Swap Operation (step 1)

Figure 4. Play Screen of Bubble Sort Game shows Card Swap Operation (step 2)

1058

Computer Games for Algorithm Learning

Second– Game Appearance Design

Same as Bubble Sort Game.

Third– Game Mechanics Design

Same as Bubble Sort Game, except for game-play.

• Game Play: the game play simulates the
algorithm steps as follows:
1. The player chooses the smallest card

value and inserts it in its correct sorting
place on the left.

2. If the player inserts the selected card
in its correct place, the player score
is increased by one; otherwise, it is
decreased by one.

3. If the level Time ends without sorting
all the cards in the deck, the player
loses the level.
a. If (player Lives > zero), the player

repeats the same level and the
player Lives is decreased by one.

b. Else the player loses the game.
4. If completes the level in the specified

time, the player goes to the next level
where the number of the cards in the
deck, level timer value, and level num-
ber are increased.

5. If completes all levels on time, the
player wins the game and the player
score is displayed.

Insertion Sort Game Prototype

The Insertion Sort algorithm sorts an array of
numbers, as follows: it removes an element from
the input data, inserts it into the correct position
in the already-sorted list until no input elements
remain, and repeats for remainder of the list
(excluding the elements in already-sorted list).

First– General Game
Design Elements

Same as Bubble Sort Game.

Second- Game Appearance Design

Same as Bubble Sort Game.

Third- Game Mechanics Design

Same as Bubble Sort Game, except for game-play.

• Game Play: in addition to the general
playing rules that have been included in
each algorithm game, the specific playing
rules that simulate the algorithm steps is as
follows (Figures 6.38-6.51):
1. The player chooses one card at a time

to be the key.
2. The player uncovers the chosen card

to see its value.
3. The player must compare the card with

all cards on the lift to insert it in its
sorted place.

4. If the player inserts a card in incorrect
place, the Player Score is decreased by
one point.

5. If the player inserts a card in correct
place, the Player Score is increased by
five points.

6. If the level time ends without sorting
all the cards, the player loses the level.

7. At each new level, the number of the
cards in the deck, Level Timer, and
Level Number are increased.

CONCLUSION

Algorithm games are part of algorithm visual-
ization approach, namely AVuSG (Algorithm
Visualization using Serious Games), that has
been defined in (Shabanah & Chen, 2009).
AVuSG produces three visualization forms: text,

1059

Computer Games for Algorithm Learning

flowchart, and game, for each algorithm under
consideration. It defines three learning processes:
viewing, playing, and designing that learners can
use to engage with each one of these three forms
of visualization. Moreover, it integrates learning
theories with game design to introduce three
educational models that instructors can deploy
in their classes to teach students algorithms: (1)
Bloom Based Model. (2) Gagne Based Model.
(3) Constructivist Based Model.

Serious Algorithm Games Visualizer (Serious-
AV) is an algorithm visualization system that has
implemented AVuSG by including several viewing
and development tools that support the creation
and viewing of the three algorithm visualization
forms (text, flowchart, and game), which are pro-
duced by AVuSG (Shabanah et al., 2010). These
tools can be grouped into two main subsystems
as follows:

1. Serious-AV Viewers that support the view-
ing and the playing processes by providing
three viewers:
a. The Algorithm Text Viewer that shows

the algorithm text to the algorithm
learners.

b. The Algorithm Flowchart Viewer that
presents the algorithm flowchart to the
algorithm learners.

c. The Algorithm Game Viewer that
displays the algorithm game to the
algorithm learners.

2. Serious-AV Designers that support the de-
signing process by providing three designers:
a. The Algorithm Text Designer that

simplifies the creation of the algorithm
text.

b. The Algorithm Flowchart Designer that
simplifies the creation of the algorithm
flowchart.

c. The Algorithm Game Designer that
simplifies the creation of the algorithm
game.

Serious-AV can be used by both instructors
and students. The instructor uses Serious-AV
designers to design the text, flowchart, and game
for the algorithm under study. The students use
Serious-AV viewers to view their instructor’s
designs. Depending on the deployed AVuSG
learning model, students may also create their
own algorithm text, flowchart, and game designs.

In the future, a study can be carried out to in-
vestigate the affects of using computer games in
algorithm learning by comparing the performance
of three treatment groups. This section describes
a study about the affects of computer games on
algorithm learning. In this study, three sorting
algorithms–Bubble, Insertion, and Selection
sorts– will be taught to three groups of students
using three methods to compare their effects on
the learning of the algorithms. With first group, no
visual tool is used to teach algorithms under study,
with second group, students watch a demonstra-
tion of algorithm games, and with third group,
algorithm games are used to teach the algorithms.

Algorithm games benefit from the players’
desire to win, love to compete and entertain-
ing resulted from playing to motivate students
learning algorithms. Algorithm games provide
richer visualizations that take better advantage
of modern graphics and audio technology. These
visualizations are designed to improve student’s
learning experience by creating a more engaging
and immersive environment. By using algorithm
games to visualize algorithms, we have introduced
“playing” as a new form of algorithm visualization
engagement that maximally engages students and
combines all five forms of active engagement.
Moreover, we facilitate the student’s assessment
using the algorithm game winning-losing criteria
without the need for external questions.

REFERENCES

Apperley, T. H. (2008). Genre and game stud-
ies: Toward a critical approach to video game.
University of Melbourne.

1060

Computer Games for Algorithm Learning

Badre, A., Beranek, M., Morris, J. M., & Stasko, J.
(1992). Assessing program visualization systems
as instructional aids. In ICCAL ‘92: Proceedings of
4th International Conference on Computer Assisted
Learning, Wolfville, (pp. 87–99). Springer-Verlag.

Baecker, R. (1998). Sorting out sorting: A case study
of software visualization for teaching computer
science. In Software Visualization: Programming
as a Multimedia Experience (pp. 369–381). The
MIT Press.

Baecker, R., & Sherman, D. (1981). Sorting out
sorting. 30 minute colour sound film. SIGGRAPH
Video Review, 7. Dynamic Graphics Project. Uni-
versity of Toronto.

Bäsken, M., & Näher, S. (2002). Geowin-a generic
tool for interactive visualization of geometric al-
gorithms. In Revised Lectures on Software Visu-
alization, International Seminar, (pp. 88–100).
Springer-Verlag.

Brown, M. H., & Sedgewick, R. (1984). A system
for algorithm animation. In SIGGRAPH ’84: Pro-
ceedings of the 11th annual conference on Computer
graphics and interactive techniques, (pp.177–186).
ACM Press.

Byrne, M. D., Catrambone, R., & Stasko, J. T.
(1996). Do algorithm animations aid learning?
(Technical Report GIT-GVU-96-18).

Carson, E., Parberry, I., & Jensen, B. (2007).
Algorithm explorer: Visualizing algorithms in a
3d multimedia environment. In SIGCSE ’07: Pro-
ceedings of the 38th SIGCSE technical symposium
on Computer science education,Covington, (pp.
155–159). ACM Press.

Carter, C. (2009). Microsoft XNA game studio 3.0
unleashed. Indiana: SAMS.

Cattaneo, G. I., & Ferraro-Petrillo, U. (2002). Catai:
Concurrent algorithms and data types animation
over the internet. Visual Languages and Comput-
ing, 13(4), 391–419. doi:10.1006/jvlc.2002.0230

Chamberlin, B. (2003). Creating entertaining
games with educational content. Unpublished
doctoral thesis, University of Virginia.

Crawford, K. (1996). Vygotskian approaches
to human development in the information era.
Educational Studies in Mathematics, 31, 43–62.
doi:10.1007/BF00143926

Csikszentmihalyi, M. (1993). The evolving self. A
psychology for the third millennium. New York:
Harper Collins.

Dempsey, J. V., Lucassen, B., Gilley, W., & Ras-
mussen, K. (1993). Since Malone’s theory of in-
trinsically motivating instruction: What’s the score
in the gaming literature? Journal of Educational
Technology Systems, 22(2), 173–183.

Dobbe, J. (2006-2007). A domain-specific lan-
guage for computer games. Unpublished Master’s
thesis, Delft University of Technology, Delft, the
Netherlands.

Eades, P. D., & Zhang, K. (Eds.). (1996). Software
visualization (Vol. 7). World Scientific.

Egenfeldt Nielsen, S. (2005). Beyond edutainment:
Exploring the educational potential of computer
games. Unpublished doctoral thesis, IT-University
of Copenhagen.

Garvey, C. (1990). Play. Cambridge, MA: Harvard
University Press.

Gee, J. (2003). What video games have to teach us
about learning and literacy. New York: Palgrave
Macmillan.

Gee, J. (2004). Good games, good teaching: In-
terview with James Gee. UW-Madison School of
Education Online News.

Grissom, S., McNally, M. F., & Naps, T. (2003).
Algorithm visualization in CS education: Com-
paring levels of student engagement. In SoftVis
’03: Proceedings of the 2003 ACM symposium on
Software visualization, San Diego, (pp. 87–94).
ACM Press.

1061

Computer Games for Algorithm Learning

Hundhausen, C. (2002). The algorithms studio
project: Using sketch-based visualization technol-
ogy to construct and discuss visual representations
of algorithms. In HCC ’02: Proceedings of the
IEEE 2002 Symposia on Human Centric Comput-
ing Languages and Environments, Arlington, (pp.
99–100). IEEE Computer Society.

Hundhausen, C., & Douglas, S. (2000). Using
visualizations to learn algorithms: Should students
construct their own, or view an expert’s? (p. 21).
IEEE Symposium on Visual Languages.

Hundhausen, C., Douglas, S., & Stasko, J. (2002).
A meta-study of algorithm visualization effective-
ness. Visual Languages and Computing, 13(3),
259–290. doi:10.1006/jvlc.2002.0237

Hundhausen, C., Wingstrom, J., & Vatrapu, R.
(2004). The evolving user-centered design of the
algorithm visualization storyboarder. In VLHCC
’04: Proceedings of the 2004 IEEE Symposium on
Visual Languages - Human Centric Computing,
(pp. 62–64). IEEE Computer Society.

Hundhausen, C. D., & Brown, J. L. (2005). What
you see is what you code: A radically dynamic
algorithm visualization development model for
novice learners. In VLHCC ’05: Proceedings of
the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, (pp. 163–170).
IEEE Computer Society.

Hyvonen, J., & Malmi, L. (1993). Trakla-a system
for teaching algorithms using email and a graphi-
cal editor. In Proceedings of HYPERMEDIA in
Vaasa, (pp. 141–147).

Jones, M. G. (1998). Creating electronic learning
environments: Games, flow, and the user interface.
In National Convention of the Association for
Educational Communications and Technology,
Houston.

Karavirta, V., Korhonen, A., Malmi, L., &
Stalnacke, K. (2004). Matrixpro-a tool for dem-
onstrating data structures and algorithms ex
tempore. In ICALT ’04: Proceedings of the IEEE
International Conference on Advanced Learning
Technologies, Washington, (pp. 892–893). IEEE
Computer Society.

Kent, S. (2001). The ultimate history of video
games: From Pong to Pokemon–the story behind
the craze that touched our lives and changed the
world. Three Rivers Press.

Korhonen, A., Malmi, L., & Saikkonen, R. (2001).
Matrix-concept animation and algorithm simula-
tion system. In ITiCSE ’01: Proceedings of the 6th
annual conference on Innovation and technology
in computer science education, Canterbury, (p.
180). ACM.

Malone, T. W. (1980). What makes things fun
to learn? Heuristics for designing instructional
computer games. In SIGSMALL ’80: Proceedings
of the 3rd ACM SIGSMALL symposium and the
first SIGPC symposium on Small systems, Palo
Alto, (pp. 162–169). ACM Press.

Malone, T. W. (1983). Guidelines for designing
educational computer programs. Childhood Edu-
cation, 59(4), 241–247.

Naps, T. L. (2005). Jhave: Supporting algo-
rithm visualization. IEEE Computer Graphics
and Applications, 25(5), 49–55. doi:10.1109/
MCG.2005.110

Naps, T. L., Rossling, G., Almstrum, V., Dann,
W., Fleischer, R., Hundhausen, C., et al. (2002).
Exploring the role of visualization and engage-
ment in computer science education. In ITiCSE-
WGR ’02: Working group reports from ITiCSE on
Innovation and technology in computer science
education, Aarhus, (pp 131–152). ACM Press.

Packard, M. (1996-2001). A crash course in game
design and production. Lord Generic Produc-
tions– Website.

1062

Computer Games for Algorithm Learning

Randel, J. M., Morris, B. A., Wetzel, C. D., &
Whitehill, B. V. (1992). The effectiveness of
games for educational purposes: A review of recent
research. Simulation & Gaming, 23(3), 261–276.
doi:10.1177/1046878192233001

Rieber, L. P. (1996). Seriously play: Designing
interactive learning environments based on the
blending of microworlds, simulations and games.
Educational Technology Research and Develop-
ment, 44(2), 43–58. doi:10.1007/BF02300540

Rossling, G., & Freisleben, B. (2002). Animal: A
system for supporting multiple roles in algorithm
animation. Visual Languages and Computing,
13(3), 341–354. doi:10.1006/jvlc.2002.0239

Schell, J. (2008). The art of game design: A book
of lenses. Morgan Kaufmann.

Shabanah, S., Chen, J., Wechsler, H., Wegman,
E., & Carr, D. (2010). Designing computer games
to teach algorithms. In ITNG 2010: Proceedings
of 7th International Conference on Information
Technology: New Generations. Las Vegas, IEEE
Computer Society.

Shabanah, S., & Chen, J. X. (2009). Simplify-
ing algorithm learning using serious games. In
WCCCE ’09: Proceedings of the 14th Western
Canadian Conference on Computing Education,
Burnaby, (pp. 34–41). ACM Press.

Shaffer, C. A., Cooper, M., & Edwards, S. H.
(2007). Algorithm visualization: A report on the
state of the field. In SIGCSE ’07: Proceedings
of the 38th SIGCSE technical symposium on
Computer science education, Covington, (pp.
150–154). ACM Press.

Sivasailam Thiagarajan, H. D. S. (1978). Instruc-
tional simulation games instructional design
library. Educational Technology Pubs.

Stasko, J. (1992). Animating algorithms
with xtango. SIGACT News, 23(2), 67–71.
doi:10.1145/130956.130959

Stasko, J., Badre, A., & Lewis, C. (1993). Do
algorithm animations assist learning? An empiri-
cal study and analysis. In CHI ’93: Proceedings
of the SIGCHI conference on Human factors in
computing systems, Amsterdam, (pp. 61–66).
ACM Press.

Stasko, J., & Kraemer, E. (1993). A methodology
for building application-specific visualizations
of parallel programs. Parallel and Distrib-
uted Computing, 18(2), 258–264. doi:10.1006/
jpdc.1993.1062

Stasko, J., & Wehrli, J. (1993). Three-dimensional
computation visualization. In Proceedings of the
1993 IEEE Symposium on Visual Languages,
(pp. 100–107).

Stasko, J. T. (1997). Using student-built algorithm
animations as learning aids. In SIGCSE ’97: Pro-
ceedings of the twenty-eighth SIGCSE technical
symposium on Computer science education, San
Jose, (pp. 25–29). ACM Press.

Stern, L., Sondergaard, H., & Naish, L. (1999). A
strategy for managing content complexity in algo-
rithm animation. In ITiCSE ’99: Proceedings of the
4th annual SIGCSE/SIGCUE ITiCSE conference
on Innovation and technology in computer science
education, Cracow, (pp. 127–130). ACM Press.

Thiagarajan, S. (1996). Instructional games, simu-
lations, and role-play. In The ASTD training and
development handbook. (pp. 517–533).

Thiagarajan, S. (2003). Laws of learning: 14
important principles every trainer should know.
Workshops by Thiagi, Inc. Cormen, T.H. & Lei-
serson, C.E. (2001). Introduction to algorithms.
McGraw Hill.

Wolf, M. (2002). The medium of the video game.
University of Texas Press.

1063

Computer Games for Algorithm Learning

KEY TERMS AND DEFINITIONS

Algorithms: A sequence of computational
steps that transform the input into the output.

Data Structure: A data structure in computer
science is a way of storing data to be used ef-
ficiently.

Algorithm Visualization: Showing all the
states of the data structures during the execution
of an algorithm.

Computer Games: Software systems that
involve interaction with a user interface to gen-
erate visual feedback on a computer or a video
device and utilize many elements, such as fun,
play, winning/losing, and competition.

Educational Games: Computer games that
involve learning of certain knowledge.

Games Design Document: Prepared by game
designers, the design document contains informa-
tion about the core elements that make a game.

Algorithm Games: Computer games with a
game-play that simulates the behavior of the visu-
alized algorithm and graphics depict the features
of its data structure.

Push: Insert an item into the top of a stack
data structure.

Pop: Delete an item from the top of a stack
data structure.

RPG: A role-playing game in which players
assume the roles of characters.

VCR: Video recorded.

