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Abstract Regression via classification (RvC) is a method

in which a regression problem is converted into a classi-

fication problem. A discretization process is used to covert

continuous target value to classes. The discretized data can

be used with classifiers as a classification problem. In this

paper, we use a discretization method, Extreme Random-

ized Discretization, in which bin boundaries are created

randomly to create ensembles. We present an ensemble

method for RvC problems. We show theoretically for a set

of problems that if the number of bins is three, the pro-

posed ensembles for RvC perform better than RvC with the

equal-width discretization method. We use these results to

show that infinite-sized ensembles, consisting of finite-

sized decision trees, created by a pure randomized method

(split points are created randomly), are not consistent. We

also theoretically show, using a set of regression problems,

that the performance of these ensembles is dependent on

the size of member decision trees.

Keywords Ensembles � Decision trees � Discretization �
Randomization � Consistency

1 Introduction

Ensembles are a combination of multiple base models [10,

18, 27]; the final classification depends on the combined

outputs of individual models. Classifier ensembles have

shown to produce better results than single models, pro-

vided the classifiers are accurate and diverse [18].

Ensembles perform best when base models are unstable–

classifiers whose output undergoes significant changes in

generalization with small changes in the training data;

decision trees and neural networks are in this class.

Several different methods have been proposed to build

decision tree ensembles. Randomization is introduced to

build diverse decision trees. Bagging [6] and Boosting [14]

introduce randomization by manipulating the training data

supplied to each classifier. Breiman [8] proposed Random

Forests (RF). To build a tree, it uses a bootstrap replica of

the training sample; then during the tree-growing phase, at

each node the optimal split is selected from a random

subset of size K of candidate features. Extremely Ran-

domized Trees (ERT), proposed by Geurts et al. [16],

combine the feature randomization of Random Subspaces

[19] with a totally random selection of the cut-point.

Random decision trees proposed by Fan et al. [12] use

completely random splits points.

The excellent performance of ensembles based on ran-

domization has led to many theoretical studies to under-

stand their performance. Lin and Jeon [22] studied RF as a

weighted layered nearest-neighbor classifier (a classifier

that takes a (weighted) majority vote among the layered

nearest neighbors of the observation O (Oi is called a

layered nearest neighbor of O if the rectangle defined by

O and Oi as their opposing vertices does not contain any

other data point.). Geurts et al. [16] show that ‘‘extremely

and totally randomized tree ensembles hence provide an
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interpolation of any output variable which, for finite M

is piecewise constant (and, hence non-smooth), and for

M �!1 piecewise multi-linear and continuous’’, where

M is the size of the ensemble.

Consistency, i.e. the fact that the solution minimizing

the empirical error does converge to the best possible error

(Bayes error) when the number of examples goes to

infinity, is an important property of classifiers. A classifier

is called universally consistent if it is consistent for any

distribution of (X, Y), where X is input and Y is output [17].

Generally in literature only ‘‘consistent’’ word is used

instead of ‘‘universal consistent’’. For example, the title of

the paper [2] ‘‘Adaboost is consistent’’. We will follow the

same terminology in our paper.

Various theoretical studies have been carried out to

understand the behavior of decision tree ensembles [2, 4].

Bartlett and Traskin [2] showed that AdaBoost is consistent

under some conditions (if it is stopped after n1�� iterations

for sample size n and e (0,1)). Biau et al. [4] showed that

RF are not consistent. Biau et al. [4] also analyzed a simple

random forest (considered by Breiman [7]). In this method,

at each iteration of tree-growing phase, a leaf is chosen

uniformly at random, and the split attribute and the split

point are selected randomly. They showed that this random

forest is consistent. In that proof, they assumed that k �!
1 and k=n �! 0 as k �!1; where k is the number of

leaves and n is the number of the data points.

In this paper, we use the methodology suggested by

Biau [3] to show that a regression function estimate is

consistent. We assume that we are given a training sample

Dn ¼ ðX1; Y1Þ; . . .; ðXn; YnÞ for a regression function r, if

the estimated regression function is rn(X) using the data

Dn; the regression function estimate rn(X) is consistent if

E[rn(X) - r(X)]2 = 0 as n goes to 1:
We will use the method of contradiction to show that

infinite-sized ensembles, consisting of finite-sized decision

trees, created by a pure randomized method (split points

are created randomly), are not consistent. We will show that

there exist a regression function r(X) for which the

regression function estimate rnðXÞ (calculated by infinite

sized ensembles, consisting of finite-sized decision trees,

created by a pure randomized method), does not fulfill the

condition E½rnðXÞ � rðXÞ�2 ¼ 0 as n goes to 1:
We will use a linear regression function, y = x, to show

that infinite-sized ensembles, consisting of finite-sized

decision trees, created by a pure randomized method (split

points are created randomly), are not consistent.

In Sect. 2, we present an ensemble method for the

Regression by Classification (RvC) method [20, 24–26]

and discuss some of its properties. In Sect. 3, we present

experiments to support our theoretical results. In Sect. 4,

we use the results obtained in Sect. 2 to show the main

result (consistency of ensembles). Section 5 contains the

conclusion and future works.

2 Regression via classification (RvC)

In machine learning and data mining fields, supervised

learning plays an important role [5, 23]. In a regression

problem, the target values are continuous, whereas in a

classification problem we have a discrete set of classes. The

discretization process can be used to convert continuous

target values into a discrete set of classes and then classi-

fication models are used to solve the classification problems

[20, 24–26]. In other words, in a RvC problem, a regression

problem is solved by converting it into a classification

problem. This method employs any classifier on a copy of

the data that has the target attribute discretized. The whole

process of RvC comprised of two important stages:

1. The discretization of the numeric target variable in

order to learn a classification model. There are

different discretization methods e.g. equal-width,

equal-frequency, etc [11].

2. The reverse process of transforming the class output of

the classification model into a numeric prediction. We

may use the mean value of the target variable for each

interval as the final prediction.

2.1 Extreme randomized discretization (ERD)

Ahmad [1] presents a discretization method, Extreme

Randomized Discretization (ERD), for creating ensembles

of decision trees. In this method bin boundaries are created

randomly. We will use the same method to create ensem-

bles for RvC. Though the same method is used, the theo-

retical explanation and applications are different. In

Ahmad [1], ERD was used to discretize attributes, whereas

in this paper, ERD is used to discretize the target variable.

We propose that ERD is useful in creating ensembles for

RvC. As discussed above, In ERD, bin boundaries for the

discretization are created randomly. This may be used in

stage 1 of RvC. As it creates diverse datasets, different

classifiers can be created. Uncorrelated models are the keys

to the success of any ensemble method [21]. We show that

the proposed ensembles for RvC perform better than single

models with equal-width discretization for RvC, if the

number of bins is 3. In the next subsection, we will show

our theoretical results.

2.2 Theoretical results

In this section, all the results are proved under following

conditions:
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1. the target value is uniformly distributed between 0 and

4L.

2. Each regression function value is predicted once.

3. The classification error is 0.

4. The mean value of the target variable for each interval

is the predicted value. As the target value is uniformly

distributed, the center of the bin is the predicted value.

5. y is the target variable.

6 yp is the target value of the point p.

7. The number of models in an ensemble is 1 and each

model has different bin boundaries.

8. The final result of an ensemble is the mean of all the

predictions (by single models).

As we have assumed that the classification error is 0, all

the theoretical results are independent of the choice of the

type of classifiers.

2.3 RvC with the equal-width discretization method

with two bins

In this case, two equal sized bins are created; the bin

boundary is at 2L, all the points at the left side of the bin

boundary will be predicted as L (the mid point of the left

bin), and all the points at the right side of the bin boundary

will be predicted as 3L (the mid point of the right bin).

Hence, the points with target values around L and 3L will

be predicted more accurately, whereas points at the 0, 2L

and 4L will have more error. The mean square error (MSE)

in this case is

ð1=4LÞ
Z2L

0

ðy� LÞ2dyþ
Z4L

2L

ðy� 3LÞ2dy

0
@

1
A ¼ 0:33L2: ð1Þ

For 4L = 100, the MSE is 208.33.

2.4 RvC with ERD with two bins

ERD creates different bin boundaries, in different runs (we

have assumed that no two bin boundaries are same in

different runs. This can be achieved by selecting a new

boundary from the boundaries that were not selected

before). Hence, the predictions are different for different

runs.

As given in Fig. 1, the bin boundary (B1) can be any-

where between the minimum value (0) and the maximum

value (4L) of the continuous target variable. If the target

value we want to predict is yp and if the bin boundary is at

the left side of the yp, the predicted value is (4L ? B1)/2. If

the bin boundary is at the right side of the yp, the predicted

value is (0 ? B1)/2, as the final result is the mean value of

all the predicted values. If the number of runs is 1; The

predicted value is

ð1=4LÞ
Zyp

0

ð4Lþ B1Þ=2dB1 þ
Z4L

yp

ð0þ B1Þ=2dB1

0
B@

1
CA ð2Þ

The predicted value ¼ yp=2þ L:

(The general formula;

The predicted value ¼ yp=2þ ðymin þ ymaxÞ=4: ð3Þ

where ymin is the minimum value of the target and ymax is

the maximum value of the target).

We discuss some of the properties of this result.

For yp = 0 the predicted value is L.

For yp = 2L the predicted value is 2L.

For yp = 4L the predicted value is 3L.

This behavior is different from the RvC with the equal-

width method with two bins as in this case target points near

the mid point of the range are predicted more accurately.

One of the important points about the predicted value

function is that it is a continuous function with respect to

the target value. In other words, the predicted values

change smoothly with respect to the target value. This is

similar to the Geurts’s study [16] about the ERT,

‘‘extremely and totally randomized tree ensembles hence

provide an interpolation of any output variable which for

M �!1 is continuous’’, where M is the size of the

ensemble. The MSE in this case is

ð1=4LÞ
Z4L

0

ðy� ðy=2þ LÞÞ2dy

0
@

1
A ¼ 0:33L2: ð4Þ

For 4L = 100, the MSE is 208.3.

The MSE in this case is equal to the RvC with the equal

width discretization method. Hence, there is no advantage

of the proposed ensembles over single models with equal-

width discretization, if the number of bins is 2.

2.5 RvC with the equal-width discretization method

with three bins

In this case the target variable is divided into equal width

bins. The size of these bins is 4L/3, bin boundaries are 4L/3

and 8L/3, and mid points of these bins will be 4L/6, 2L and

Fig. 1 In the subfigure 1 (top figure) the bin boundary B1 is at the left

side of the point to be predicted, yp, whereas in the subfigure 2

(bottom figure), the bin boundary B1 is at the right side of yp
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20L/6. Hence, the predicted values will be 4L/6, 2L and

20L/6 depending upon in which bin the point lies. The

MSE for this case is

ð1=4LÞ
Z4L=3

0

ðy� 4L=6Þ2dyþ
Z8L=3

4L=3

ðy� 2LÞ2dy

0
B@

þ
Z4L

8L=3

ðy� 20L=6Þ2dyÞ ¼ 0:14L2: ð5Þ

For 4L = 100, the MSE is 87.5.

2.6 RvC with ERD with three bins

In this case, there are two bin boundaries; B1 and B2. To

calculate the predicted value, we will calculate the mean

value of all the predicted values by different models. There

are two cases (Fig. 2);

1. The bin boundary B1 is left of the given point yp. The

two conditions are possible.

• The bin boundary B2 is at the right of B1. In this

case, for different runs B2 is placed at different

points between points B1 and 4L. This case is

similar to the two-bin case with the boundaries; B1

and 4L. Hence, for a given B1, the mean value is yp/

2 ? (4L ? B1)/4 (by using Eq. 3).

• The bin boundary B2 is at the left of B1. In this

case, the predicted values is the center of the

rightmost bin. It is (B1 ? 4L)/2, this value is

independent of B2. Hence, the mean value for a

given B1 is (B1 ? 4L)/2.

The probability of the first condition = (4L - B1)/4L.

The probability of the second condition = B1/4L.

As B1 can take value from 0 to yp. The mean value of this

case (the bin boundary B1 is left of the given point yp) is,

ð1=ypÞ
Zyp

0

ððyp=2þ ðð4Lþ B1Þ=4ÞÞðð4L� B1Þ=4LÞ

0
@

þ ððB1 þ 4LÞ=2ÞðB1=4LÞÞdB1Þ ð6Þ

¼ �y2
p=24Lþ 3yp=4þ L: ð7Þ

2. The bin boundary B1 is at right of the given point yp.

The two conditions are possible.

• The bin boundary B2 is at the right of B1. In this

condition, the predicted values is the center of the

leftmost bin, which is B1/2. Hence, the mean value,

for a given B1 is B1/2.

• The bin boundary B2 is at the left of B1. In this

condition, for different runs B2 is placed at

different points between points 0 and B1. This

case is similar to two-bin case with the range of the

target variable between 0 and B1. Hence, the mean

value, for a given B1 is, yp/2 ? (0 ? B1)/4

The probability of the first condition = (4L - B1)/4L.

The probability of the second condition = B1/4L.

As B1 can take value from yp to 4L. The mean value of

this case (the bin boundary B1 is at right of the given

point yp) is

1=ð4L� ypÞ
Z4L

yp

ðB1=2Þð4L� B1Þ=4Lþ ðyp=2

þ B1=4ÞðB1=4LÞdB1 ð8Þ

¼ �y2
p=24Lþ 5yp=12þ 2L=3 ð9Þ

The mean value of all the cases = (The mean value of case

1) (The probability of case 1) ? (The mean value of case 2)

(The probability of case 2)

ð�y2
p=24Lþ 3yp=4þ LÞyd=4Lþ ðy2

p=24Lþ 5yp=12

þ 2L=3Þð4L� ypÞ=4L: ð10Þ

¼ yp=2þ ð2L=3þ y2
p=8L� y3

p=48L2Þ: ð11Þ

For yp = 0 the predicted value is 2L/3.

For yp = 2L the predicted value is 2L.

For yp = 4L the predicted value is 14L/3.

The MSE for this case is

1=4L

Z4L

0

ðy� ðy=2þ 2L=3þ y2=8L� y3=48L2ÞÞdy

0
@

1
A:

ð12Þ

Fig. 2 1 The first bin boundary B1 is at the left side of the yp. The

second bin boundary B2 is at the right side B1. 2 The first bin

boundary B1 is at left side of the yp. The second bin boundary B2 is at

the left side B1. 3 The first bin boundary B1 is at the right side of the

yp. The second bin boundary B2 is at the right side B1. 4 The first bin

boundary B1 is at the right left side of the yp. The second bin boundary

B2 is at the left side B1
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MSE = 0.12 L2 (for 4L = 100, the MSE is 75) which is

better than RvC with the equal-width method with three

bins (MSE = 0.14L2). This proves that the ensembles with

the proposed ensemble method performs better than single

model with equal-width discretization for RvC, if the

number of bins is 3.

The MSE graph for two bins and three bins are pre-

sented in Fig. 3. One may follow the same kind of calcu-

lation to extend these results for bins more than 3. It will be

cumbersome but straightforward calculation. As 3 bins

improve the performance of ERD ensembles more as

compared with single model with equal-width discretiza-

tion, we may suggest intuitively that the more bins will

give more performance advantage to the proposed

ensemble method. We will verify this fact experimentally

in the next section.

3 Experiments

We carried out experiments with y = x function. This is a

uniformly distributed function. We generated 10,000 points

between 0 B x B 100; 5,000 points were used for training

and 5,000 points were used for testing. We used unpruned

C4.5 decision tree (J48 decision tree of WEKA software

[28]) as the classifier. The final result from a classifier was

the mean value of the target variable (y in this case) of all

the points in the predicted bin. In the results, we found that

the classification error was almost 0. As in these experi-

ments all the conditions of our theoretical results were

fulfilled, we expected that the experimental results should

closely match the theoretical results. We carried out

experiments with two bins and three bins. The size of the

ensemble was set to 100. The experiments were conducted

by using 5 9 2 cross-validation [9]. The average results are

presented in the Table 1. Results suggest that there is an

excellent match between experimental results and theo-

retical results for two-bin and three-bin cases. We also

carried out experiments with 5, 10, and 20 bins. Results

suggest that the ratio of the average MSE of RvC with

equal-width discretization to the average MSE of RvC with

ERD is increasing with the number of bins. This suggests

that there is more performance advantage with ERD when

we have large number of bins. This verifies our intuition

that as we increase the number of bins the performance

advantage increases for ERD ensembles.

3.1 Other datasets

In our theoretical studies, we assumed that the classifica-

tion error is zero; however, this condition is not possible in

most of the cases. Hence, we also carried out experiments

with different popular regression datasets (these datasets

are taken from www.liaad.up.pt/ltorgo/Regression/DataSets.

html). In other words, the purpose of these experiments is

Fig. 3 MSE (for two bins in top figure, and three bins in bottom

figure) in different cases

Table 1 MSE in different cases

The number

of bins

MSE for RvC with equal-

width bins (theoretical)

MSE for RvC with equal-width

bins (experimental) (1)

MSE for RvC with

ERD (theoretical)

MSE for RvC with ERD

(experimental) (2)

(1)/(2)

2 208.3 209.1 (2.2) 208.3 210.3 (3.1) 0.99

3 87.5 90.3 (1.7) 75 77.3 (1.5) 1.17

5 – 33.1 (0.8) – 18.6 (0.4) 1.78

10 – 8.3 (0.2) – 2.6 (0.1) 3.19

20 – 2.9 (0.1) – 0.4 (0.1) 7.25

For experimental results, the average results are given, s.d. is given in bracket. The final column suggests that the performance advantage of the

proposed ensemble method improves with larger number of bins
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to study the performance of the proposed ensemble method

when the classification error is not zero. The information

about the datasets is given in Table 2. The size of the

ensembles was set to 100 for all the experiments. The

number of bins was set to 10 for RvC methods. In RvC

methods, we may use any type of classifier for the classi-

fication step. However, in this paper, we are concentrating

on the theoretical study of decision tree ensembles.

Hence, we carried out all experiments with decision trees

(unpruned C4.5 decision tree (J48 decision tree of WEKA

software [28]). The experiments were conducted by using

5 9 2 cross-validation [9].

Results (Average Root MSE), presented in Table 3

suggest that the proposed ensemble method performs

consistently better than a single model (RvC with the equal

width discretization method). This shows the effectiveness

of our approach.

The number of bins is an important variable, as a small

number of bins lead to the better classification; however,

the values represented by bins will be less representative of

the points in the bins. If the number of bins is large, the

number of points in each bin will be small; this leads to the

poor classification accuracy. However, the values repre-

sented by bins will be more representative of the points in

the bins. One may use cross validation to find out the

number of bins for the best regression results.

4 Consistency of ensembles of randomized trees

In this section, we will use the results obtained in the last

section to show that

1. An infinite-sized ensemble, consisting of finite-sized

decision trees, created by a pure randomized method

(split points are created randomly), is not consistent.

2. We also show theoretically that the performance of

these ensembles are dependent on the size of individ-

ual decision trees.

4.1 Consistency results

We will show that infinite-sized ensembles of finite-sized

decision trees are not consistent for y = x problem. Hence,

they are not universal consistent. While growing a decision

tree, at each node the available data points are split into two

partitions on the basis of a given split criterion, e.g.

information gain, information gain ratio, etc. However,

there are various ensemble methods that create individual

decision trees with random split points; in other words,

split points are selected randomly [13, 16]. If we are cre-

ating trees with the data for the problem y = x, using the

method suggested in ERT [16] and Random trees [13], we

randomly select the split point from the data points repre-

senting x at the node. If the number of data points is1; any

point between 0 and 4L can be selected as the split point.

Let us assume the split point is xs; then let all points less

then xs be part of one partition and all points greater than or

equal to xs form the second partition. If we want to create a

decision tree with only one split point then Fig. 4 will be

our tree (with one parent and two child nodes) and the

average value of y of all the points in a partition will be the

prediction of that partition. We can say this is similar to

selecting a split point ys (ys = xs because y = x) randomly

Table 2 Details of datasets used in the experiments

Name Number of attributes Number of data points

Abalone 8 4,177

Bank8FM 8 8,192

Cart 10 40,768

Delta_Ailerons 6 7,129

Delta_Elevator 6 9,517

House (8L) 8 22,784

House (16H) 16 22,784

Housing (Boston) 13 506

Kin8nm 8 8,192

Puma8NH 8 8,192

Puma32H 32 8,192

Table 3 Experimental results for different methods for different

datasets

Name of

dataset

MSE for RvC

with ERD (1)

MSE for RvC

with equal-width

bins (2)

Ratio

of

RMSE

(2)/(1)

Abalone 2.24 (0.05) 2.89 (0.08) 1.29

Bank8FM 3.61 (0.11) 9 10-2 5.31(0.17) 9 10-2 1.47

Cart 1.06 (0.02) 1.46 (0.06) 1.37

Delta_Ailerons 1.72 (0.03) 9 10-4 2.75 (0.05) 9 10-4 1.59

Delta_Elevator 1.52 (0.02) 9 10-3 1.91 (0.03) 9 10-3 1.25

House (8L) 3.12 (0.05) 9 104 4.12 (0.08) 9 104 1.32

House (16H) 3.51 (0.07) 9 104 4.62 (0.10) 9 104 1.31

Housing

(Boston)

3.98 (0.09) 5.23 (0.12) 1.31

Kin8nm 0.17 (0.01) 0.24 (0.02) 1.41

Puma8NH 3.28 (0.14) 4.50 (0.16) 1.37

Puma32H 8.21 (0.43) 9 10-3 1.20 (0.04) 9 10-2 1.46

The average results for RMSE (Root Mean Square Error) are pre-

sented. s.d. is given in the bracket. The last column presents the ratio

of RMSE of RvC with equal-width bins and RMSE of RvC with

ERD. The value greater than 1.0 suggests that RvC with ERD per-

formed better
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from the y values and calculating the average of the values

of all points less then ys be part of one partition and all

points greater than or equal to ys form the next partition.

This is similar to RvC in which discretization is created by

ERD (as discussed in Sect. 2,). Hence, if we have infinite

decision trees created by this method with different split

points, it is exactly the same as the RvC with ERD having

two bins. If we want to predict a y value for a given x, for

each tree, the result will depend upon the value of the x is

less than xs or, greater than or equal to xs or we can say the

value is predicted depending upon ys. Hence, the final

result will be the same as RvC with ERD having two bins.

If we all predicting all points with x values between 0 and

4L the MSE will be 0.14L2. Hence, E½rnðXÞ � rðXÞ�2 6¼ 0

as n goes to 1: This shows that ensembles consisting of

decision trees with one split point (created randomly) are

not consistent.

If we create trees with two split points (created ran-

domly), xs and xr, we will have three leaves; if ys = xs and

yr = xr, three leaves will consist of points with, y \ yr,

yr B y \ ys, y C ys or y \ ys, ys B y \ yr, y C yr (Figs. 5

and 6). If the values of leaves are taken as the average of

the point present in leaves, this is similar to RvC with ERD

with three bins. Hence, if we predict all points with x

values between 0 and 4L the MSE will be 0.12L2. Hence,

E½rnðXÞ � rðXÞ�2 6¼ 0 as n goes to 1: This proves that

ensembles consisting of decision trees with two split points

(created randomly) are not consistent.

We did not prove the results for RvC, with ERD with

more than three bins. However, we note that for the MSE

calculation of RvC with ERD with three bins, we used the

result of RvC with ERD with two bins. This suggests that

for the higher number of bins, the MSE results of lower

number of bins are used. As the MSEs with two bins and

three bins are not zero, we can say MSE derived with these

results for four bins will not be zero. This argument can be

extended further to suggest that the MSE for RvC with

ERD with finite number of bins (m bins) will not be zero.

Experiment results suggest the same. As this is similar to

ensembles with trees with finite random splits (m - 1

splits), we can say that E½rnðXÞ � rðXÞ�2 6¼ 0 as n goes to

1: This proves that ensembles consisting of decision trees

with finite number of split points (created randomly) are

not consistent.

4.2 The effect of the size of the tree

Generally trees with random splits in an ensemble are not

pruned [8, 16]. In other words, large-sized trees are pre-

ferred. Models have been suggested that show the

Fig. 4 A decision tree with two leaves

Fig. 5 A decision tree with three leaves

Fig. 6 A decision tree with three leaves
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importance of size of the ensemble [15]. Our model sug-

gests that for the regression function y = x, infinite-sized

ensembles with decision trees with three leaves are more

accurate than infinite-sized ensembles with decision trees

with two leaves. This shows the importance of large-sized

trees in ensembles. In other words, to calculate the per-

formance of the ensembles with trees with random splits

along with the size of the ensembles, the size of the trees

should also be considered. This may look obvious as an

ensemble of trees behaves as a large tree; hence an

ensemble of large trees has better representation power.

However, in the present paper, we have considered that the

size of ensembles is 1 and all trees in an ensemble are

uncorrelated. According to the study by Guerts et al. [16]

for infinite-sized ensembles, ‘‘extremely and totally ran-

domized tree ensembles hence provide an interpolation of

any output variable’’. This says nothing about the size of

the member trees. However, our study suggests that even

with infinite-sized ensembles, the sizes of individual trees

should be considered to calculate the performance of

ensembles.

5 Conclusion

In the present paper, we presented an ensemble method for

RvC problem. We showed theoretically for a set of a

problems that this ensemble method performs better than a

single model for RvC with equal-width discretization,

when the number of bins in 3. We used the similarity of the

proposed ensemble method and ensembles of randomized

trees to show that ensembles of infinite size, consisting of

finite-sized decision trees, created by a pure randomized

method (split points are created randomly), are not con-

sistent. We also showed that the even with the infinite-

sized ensembles, the size of member trees is an important

factor for the performance of ensembles. In this paper, we

proved the results for a set of problems; however, in future,

we will try to prove these results for a wide range of

problems.
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