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Abstract 
One of commonly used approach to enhance the Web performance is Web proxy caching technique. 
In Web proxy caching, Least-Frequently-Used-Dynamic-Aging (LFU-DA) is one of the common 
proxy cache replacement methods, which is widely used in Web proxy cache management. LFU-DA 
accomplishes a superior byte hit ratio compared to other Web proxy cache replacement algo-
rithms. However, LFU-DA may suffer in hit ratio measure. Therefore, in this paper, LFU-DA is en-
hanced using popular supervised machine learning techniques such as a support vector machine 
(SVM), a naïve Bayes classifier (NB) and a decision tree (C4.5). SVM, NB and C4.5 are trained from 
Web proxy logs files and then intelligently incorporated with LFU-DA to form Intelligent Dynamic- 
Aging (DA) approaches. The simulation results revealed that the proposed intelligent Dynamic- 
Aging approaches considerably improved the performances in terms of hit and byte hit ratio of the 
conventional LFU-DA on a range of real datasets. 
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1. Introduction 
The most popular solution for improving Web performance is a Web caching technology. The Web caching 
technique is a very useful mechanism in reducing network bandwidth utilization, decreasing user-perceived de-
lays, and reducing loads on the original servers. In Web proxy caching, Web objects that are likely to be used in 
the near future are kept in proxy servers, which play key roles between users and Web sites in reducing the re-
sponse time of user requests and saving network bandwidth.   
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Due to cache space limitations, a Web proxy cache replacement is required to manage the Web proxy cache 
contents efficiently. In the proxy cache replacement, the proxy cache must effectively decide which objects are 
worth caching or replacing with other objects. The Web cache replacement is the core or heart of Web caching; 
hence, the design of efficient cache replacement algorithms is crucial for the success of Web caching mechan-
isms [1]-[9]. So, the Web cache replacement algorithms are also known as Web caching algorithms [1]. 

In the Web cache replacement, a few important features or factors of Web objects, such as recency, frequency, 
size, cost of fetching the object from its origin server and access latency of object, can influence the perfor-
mance of Web proxy caching [1]-[11]. These factors can be incorporated into the replacement decision for better 
performance. 

In Web proxy cache replacement, Least-Frequently-Used-Dynamic-Aging (LFU-DA) policy is a conventional 
Web cache replacement method, which attempts to remove the cache pollution in a LFU policy. LFU-DA ac-
complishes a superior byte hit ratio compared to other Web proxy cache replacement algorithms. However, the 
performance of LFU-DA in terms of hit ratio is not efficient enough since it does not consider the size or the 
download latency of objects. 

Most of the conventional Web cache replacement approaches consider just some factors and ignore other fac-
tors that have an impact on the efficiency of the Web caching [1]-[11]. Moreover, a combination of these factors 
to get wise replacement decision is not a simple task. This is because one factor in a particular environment may 
be more important than other factors in other environments [1]-[11]. Therefore, a large portion of objects, which 
are stored in the cache, are never requested again or requested after a long time. This leads to cache pollution, 
where the cache is polluted with inactive objects. This causes a reduction of the effective cache size and nega-
tively affects the performance of Web proxy caching. Even if we can locate a large space for the proxy cache, 
this will not be helpful since just the preferred objects are visited by users. Moreover, the searching for an object 
in a large cache needs a long response time and an extra processing overhead. Thus, the conventional Web 
proxy cache replacement policies are no longer efficient enough [11]. This is motivation to adopt intelligent 
techniques for solving the Web proxy caching problems. The second motivation behind the development of in-
telligent approaches in Web caching is availability of proxy logs files that can be exploited as training data. In a 
Web proxy server, Web proxy logs file records activities of the users and can be considered as complete and 
prior knowledge of future access. Therefore, the machine learning techniques can beutilized to produce an effi-
cientand adaptive Web proxy cache replacement scheme, which can adapt to important updates and changes in 
the Web environment during the training phase. 

Several research works have developed intelligent approaches that are smart and adaptive to the Web caching 
environment. A multilayer perceptron network (MLP) [1], back-propagation neural network (BBNN) [2] [3], lo-
gistic regression (LR) [4], multinomial logistic regression (MLR) [5], adaptive neuro-fuzzy inference system 
(ANFIS) [6], and others [7]-[9] have been utilized in Web caching. In most of these studies, an intelligent su-
pervised machine learning technique was employed in Web caching individually or integrated just with Least- 
recently used (LRU) algorithm. In addition, they utilize an artificial neural network (ANN) in Web proxy cach-
ing although ANN training may consume more time and require extra computational overhead. Besides, ANN is 
influenced by the optimal selection of the network topology and its parameters. More significantly, integration 
of an intelligent technique in Web cache replacement is still a popular research subject [7] [8]. 

In this paper, alternative supervised machine learning techniques are proposed to improve the performance of 
Web proxy caching. Support vector machine (SVM), Naïve Bayes (NB) and decision tree (C4.5) are three pop-
ular supervised learning algorithms, which identified as three of the most influential algorithms in data mining 
[10]. SVM, C4.5 and NB have many advantages over ANN and other machine learning algorithms. They are 
very efficient, easy to construct with few parameters. In addition, C4.5 and NB are simple to understand and in-
terpret. In addition, SVM, C4.5 and NB perform classifications more accurately and faster than other algorithms 
in a wide range of applications such as text classification, Web page classification and bioinformatics applica-
tions, medical filed, military applications, forecasting, finance and marketing [10]. Hence, SVM, C4.5 and NB 
classifiers can be utilized to produce promising solutions for Web proxy caching. 

The proposed intelligent Web proxy replacement approaches are entirely different from the existing intelli-
gent works. Our intelligent dynamic aging approaches is based on SVM, C4.5 and NB classifiers to combine the 
most significant factors for predicting probability that Web objects would be re-visited later. Then, unlike the 
existing intelligent works, the proposed intelligent dynamic aging approaches integrate classification informa-
tion in proxy cache replacement decision as an alternative to the frequency factor in LFU-DA.  
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The remaining parts of this paper are organized as follows. Background and related works are presented in 
Sections 2 and 3. Web proxy cache replacement is presented in Sections 2, while Section 3 describes briefly 
machine learning classifiers used in this study. In Section 4, a methodology of Intelligent Dynamic-Aging (DA) 
approaches used for improving Web proxy replacement is explained. Section 5 presents and discusses results of 
intelligent Dynamic-Aging (DA) approaches compared with conventional Web proxy cache replacement tech-
nique. Finally, Section 6 summarizes and concludes the works presented in this paper. 

2. Web Proxy Cache Replacement  
Web caching becomes one of the most successful solutions for improving the performance of Web-based system.  
In Web caching, the popular Web objects that likely to be used soon are stored in positions closer to user like 
client machine or proxy server. Significantly, the Web caching has several attractive advantages: 
 Reducing user perceived latency. 
 Reducing network traffic and therefore reducing network costs for both content provider and consumers. 
 Reducing loads on the origin servers.  
 Increasing reliability and availability of Web and application servers. 
 Reducing hardware and support costs. 

Web caching technique can be implemented in various locations throughout the Web. The Web proxy caching 
is widely utilized by computer network administrators, technology providers, and businesses to reduce user de-
lays and to reduce Internet congestion [1] [3]. 

The Web proxy cache replacement plays an extremely important role in Web proxy caching. Hence, the de-
sign of efficient cache replacement algorithms is required to achieve highly sophisticated caching mechanism. 
The effective cache replacement algorithm is vital and has a profound impact on Web proxy cache management 
[6]-[8] [11]. Therefore, this study pays attention to improvement of Web proxy cache replacement approaches. 
In general, cache replacement algorithms are also called Web caching algorithms [1]. 

As cache size is limited, a cache replacement policy is needed to handle the cache content. If the cache is full 
when an object needs to be stored, the replacement policy will determine which object is to be evicted to allow 
space for the new object. The optimal replacement policy aims to make the best use of available cache space, 
improve cache hit rates, and reduce loads on the origin server.  

One of the simplest and most common cache replacement approaches is Least-Recently-Used (LRU) algo-
rithm, which removes the least recently accessed objects until there is sufficient space for the new objects. LRU 
is easy to be implemented and proficient for caching uniform size objects such as the CPU cache. However, it 
does not perform well in Web caching since it does not consider the size or the download latency of objects [1].  

Least-Frequently-Used (LFU) is another common Web caching policy that replaces the object with the least 
number of accesses. LFU keeps popular Web objects and evicts rarely used ones. However, LFU suffers from 
the cache pollution in objects with the large reference accounts, which are never replaced even if these objects 
are not re-accessed again [1] [12] [13]. As attempt to reduce cache pollution caused by LFU, Least-Frequently- 
Used-Dynamic-Aging (LFU-DA) is introduced by Arlitt et al. [14]. LFU-DA added dynamic aging to LFU pol-
icy. LFU-DA computes the key value K(g) of object g using Equation (1). 

( ) ( )K g L F g= +                                     (1) 

where F(g) is the frequency of the visits of object g, while L is a dynamic aging factor. L is initialized to zero, 
and then updated to the key value of the last removed object.  

LFU-DA accomplishes a superior byte hit ratio compared to other Web proxy cache replacement algorithms. 
However, LFU-DA may suffer in hit ratio measure due to its retaining of the most popular objects; regardless of 
object size [2] [13] [14]. 

SIZE policy is one of the common Web caching policies. It replaces the largest object(s) from cache when 
space is needed for a new object. Thus, a cache can be polluted with small objects which will not be accessed 
again. To alleviate cache pollution in SIZE policy, Cao and Irani [15] suggested Greedy-Dual-Size (GDS) policy 
as an extension of SIZE policy. GDS policy integrated several factors and assigned a key value for each Web 
object stored in the cache. When cache space becomes occupied and a new object is required to be stored in the 
cache, the object with the lowest key value is removed. When the user requests the object g, the GDS algorithm 
assigns key value K(g) of object g as shown in Equation (2). 
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( ) ( )
( )

C g
K g L

S g
= +                                      (2) 

where C(g) is the cost of fetching object g from the server into the cache; S(g) is the size of object g; and L is an 
aging factor. L in GDS starts at zero and is updated to the key value of the last replaced object. The key value 
K(g) of object g is updated using the new L value since object g is accessed again. Thus, larger key values are 
assigned to objects that have been visited recently. If C(g) is set to 1, it becomes GDS (1), and when the cost is 
set to the number of TCP packets needed to transmit object g, i.e., C(g) = 2 + S(g)/536, it becomes GDS (pack-
ets).  

Cao and Irani [15] proved that the GDS algorithm achieved better performance compared with some tradi-
tional caching algorithms. However, the GDS algorithm ignores the frequency of the Web object. Cherkasova 
[13] enhanced the GDS algorithm by integrating the frequency factor into the key value K(g) as shown in Equa-
tion (3). The policy is known as Greedy-Dual-Size-Frequency (GDSF). 

( ) ( ) ( )
( )

*
C g

K g L F g
S g

= +                                 (3) 

where F(g) is the frequency of the visits of object g. Initially, when g is requested, F(g) is initialized to 1. If g is 
in the cache, its frequency is increased by one. Similar to GDS, we then have GDSF (1) and GDSF (packets). 
Although GDSF achieves the best hit ratio, it yields a modest byte hit ratio [13]. 

Most Web proxy servers are still based on theses conventional replacement policies mentioned earlier for Web 
proxy cache management. These conventional Web caching methods form the basis of other caching algorithms [3] 
[11]. However, these conventional approaches still suffer from some limitations as shown in Table 1. 

 
Table 1. Conventional Web cache replacement policies.                                                         

Policy Brief description Advantages Disadvantages 

LRU The least recently used  
objects are removed first. 

Simple and efficient with uniform  
size objects, such as the memory cache. 

Ignores download latency  
and the size of Web objects 

LFU The least frequently used  
objects are removed first. Simplicity 

Ignores download latency  
and size of objects and  
may store obsolete  
Web objects indefinitely. 

LFU-DA Dynamic aging factor (L)  
is incorporated into LFU. 

 Reduces cache pollution caused by LFU. 
 High byte hit ratio May suffer from hit ratio 

SIZE Big objects are removed first 
Prefers keeping small Web  
objects in the cache,  
causing high cachet hit ratio. 

 Stores small Web objects 
even if these object are  
never accessed again. 

 Low byte hit ratio. 

GDS 

It assigns a key value to each  
cached object g as equation below.  

The object with the lowest key  
value is replaced first. 

( ) ( )
( )

C g
K g L

S g
= +  

where C(g) is the cost of  
fetching g from the server;  
S(g) is the size of g; and  

L is an aging factor. 

 Overcomes the weakness of SIZE  
policy by removing objects which  
are no longer requested by users. 

 High hit ratio 

 Does not take into  
account the previous  
frequency of Web objects. 

 Low byte hit ratio. 

GDSF 
It extends GDS by integrating  

the frequency factor  
into the key value 

 Takes into account the previous  
frequency of Web objects. 

 Very high hit ratio 

 Does not take into account 
the predicted accesses 

 Low byte hit ratio. 
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3. Supervised Machine Learning 
In supervised learning, the data (observations) are labeled with pre-defined classes. It is like that a teacher gives 
the classes. Support vector machine, naïve Bayes and decision tree are three popular supervised learning algo-
rithms that perform classifications more accurately and faster than other algorithms in a wide range of applica-
tions [10]. 

3.1. Support Vector Machine 
The support vector machine (SVM) is one of the most robust and accurate methods in all well-known machine 
learning algorithms. SVM was used successfully in a wide range of applications such as text classification, Web 
page classification and bioinformatics applications [16] [17]. 

Support vector machine (SVM) is a discriminative model that essentially works on two assumptions. First, 
SVM utilizes a small part of the training dataset called support vectors, which are close to the separating hyper-
plane and provide the most useful information for classification. Second, data is transformed into a high-dimen- 
sion to use linear discriminate functions. 

Consider a set of training data vectors { }1, , , n
L iX x x x R= ∈  and a set of corresponding labels 

{ } { }1, , , 1, 1L iY y y y= ∈ − . 
In SVM training, several kernel functions such as polynomial, sigmoid and RBF can be used to solve different 

classifications problems. However, RBF kernel function is the most often used kernel function and can achieve a 
better performance in many applications compared to other kernel functions. 

In this study, RBF kernel function, expressed in Equation (4), is used in SVM training. 

( ) ( )2
, exp , 0i j i jk x x x xγ γ= − − >                              (4) 

where the parameter γ  represents the width of the RBF. 
After training, the model can be saved to be used for later prediction. In future classification, the obtained 

SVM uses Equation (5) to predict the class of a Web object to each input vector x. 

( ) ( )
1

,
M

j j j
j

y x sgn y K x x bα
=

 
= + 

 
∑                                (5) 

where M is the number of support vectors, jα  is Lagrangian multipliers and b R∈ . 

3.2. Naïve Bayes 
Although the Naïve Bayes (NB) classifier makes the restrictive assumption of conditional independence, several 
research works have shown that its classification accuracy is surprisingly strong. Moreover, the NB classifier 
has other interesting advantages. It is very efficient, easy to construct without parameters, and simple to be un-
derstood and interpreted [17] [18]. 

NB is very simple Bayesian network which has constrained structure of the graph [19]. In NB, all the 
attributes are assumed to be conditionally independent given the class label. The structure of the NB is illu-
strated in Figure 1. 

In most of the data sets, the performance of the NB classifier is surprisingly good even if the independence 
assumption between attributes is unrealistic [19] [20]. Independence between the features ignores any correla-
tion among them. 

Let 1 2 / /, , , AA A A  be the set of attributes with discrete values in the data set D. Let C be the class attribute 

with |C| values, 1 2 / /, , , Cc c c . Given a test example 
/ /1 1 / /, ,
AAd A a A a= = = , where ia  is a possible value 

of iA . In the training phase of NB classifier, it is only required to estimate the prior probabilities ( )Pr jC c=  

and the conditional probabilities ( )Pr i i jA a C c= =  from the training dataset.  Then, the NB classifier can 
predict class of a Web object using the Formula (6). 

( ) ( )
/ /

1
arg max Pr Pr

j

A

j i i j
c i

c C c A a C c
=

= = = =∏                          (6) 
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Figure 1. Structure of a naïve Bayes network.   

3.3. Decision Tree 
The decision tree is one of the most widely used and practical methods for inductive inference among others.  
The most well-know algorithm in the literature for building decision trees is the C4.5 decision tree algorithm, 
which was proposed by Quinlan (1993) [21]. In C4.5, the learned classifier is represented by a decision tree and 
can also be represented as sets of if-then rules to improve human readability. Therefore, the decision tree is sim-
ple to be understood and interpreted. Besides, it can handle nominal and categorical data and perform well with 
large dataset in a short time [22]. 

In the process of constructing the decision tree, the root node is first selected by evaluating each attribute on 
the basis of an impurity function to determine how well it alone classifies the training examples. The best 
attribute is selected and used to test at the root node of the tree. A descendant of the root node is created for each 
possible value of this selected attribute, and the training examples are sorted to the appropriate descendant node. 
The process is then repeated using the training examples associated with each descendant node to select the best 
attribute to test at that point in the tree. 

4. Intelligent Dynamic-Aging Approaches  
In Intelligent Dynamic-Aging Approaches, the supervised machine learning techniques are initially trained form 
Web proxy logs file. Then, the trained machine learning classifiers contribute to improvement of Web proxy 
caching in three stages: extraction of object’s attributes, computation of object priority based on the trained clas-
sifiers and removal of objects with lowest priority. 

The proxy logs files are considered a complete and prior knowledge of the users’ interests and can be utilized 
as training data to effectively predict the next Web objects. The training dataset preparation step requires ex-
tracting the desired information from the logs proxy files, and then selecting the input/output dataset. 

A training pattern takes the format 1 2 3 4 5 6, , , , , ,x x x x x x y . 1 6, ,x x  represent the input features and y  
represents the target output of the requested object. Table 2 shows the inputs and their meanings for each train-
ing pattern. 

The value of y will be assigned to 1 if the object is re-requested again within the forward-looking sliding 
window. Otherwise, the target output will be assigned to 0. The idea is to use information about a Web object 
requested in the past to predict revisiting of such Web object within the forward-looking sliding window. In this 
study, sliding window is set to 30 minutes during the training datasets preparation. 

The frequency factor is an important indicator for predicting the revisiting of Web objects in the future; how-
ever, other factors can also contribute in predicting the revisiting of object. In Intelligent Dynamic-Aging Ap-
proaches, the key value of object g is determined not just by its occurrence frequency in the past, but also by six 
factors: recency, frequency, sliding window-based frequency, retrieval time, size, and type of object. Therefore, 
the frequency is replaced by the probability of revisiting of object in the future as a proposed enhancement of the 
LFU-DA algorithm. 

In Intelligent Dynamic-Aging Approaches, either the trained SVM, NB or C4.5 is combined with DA to pro-
duce novel intelligent Web proxy caching approaches for making cache replacement decisions. The proposed 
intelligent cache replacement approaches are known as SVM-DA, NB-DA and C4.5-DA.  

In SVM-DA, NB-DA and C4.5-DA, SVM, NB and C4.5  are  trained using Web proxy logs files to predict 
the class of objects to be re-visited or not. Then, the trained SVM, NB and C4.5 can combine the most signifi-
cant factors, such as the recency, frequency, SWL-based frequency, retrieval time, size, and type of object, for 
predicting the probability that Web objects would be re-visited.  

 

C 
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Table 2. The meaning of inputs in the training pattern.                                                          

Input Meaning 

1x  Recency of Web object access based on backward-looking sliding window 

2x  Frequency of Web object accesses 

3x  Frequency of Web object accesses based on backward-looking sliding window 

4x  Retrieval time of Web object in milliseconds 

5x  Size of Web object in bytes 

6x  Type of Web object 

 
In other words, when a user visits Web object g, the SVM, NB or C4.5 classifier can predict the probability 

Pr(g) of belonging object g to the class of objects that would be revisited. Then, the probabilities of g are accu-
mulated as scores, ( ) ( )W g Pr g=∑ , and used in cache replacement decision as show in Equation (7). 

( ) ( )K g L W g= +                                    (7) 

where L is a dynamic aging factor, which is initialized to zero, and then updated to the key value of the last re-
moved object. 

The object with the lowest scores is a better choice for replacement. In the proposed SVM-DA, NB-DA and 
C4.5-DA approaches, L is useful to prevent the cache pollution and improve the performance in implementation 
for longer periods of time. Figure 2 explains the algorithm of intelligent DA approaches. 

5. Results and Discussion 
In this study, the proxy datasets or the proxy logs files were obtained from five proxy servers located in the 
United States from the IRCache network and covered fifteen days [23]. The proxy logs files of 21st August, 
2010 were used in the training phase, while the proxy logs files of the following two weeks were used in the si-
mulation.  

The machine learning techniques were trained using WEKA. The SVM model was trained using the libsvm 
library [24]. The generalization capability of SVM is controlled through a few parameters such as the term C(C 
is a positive regularization constant, which controls allowable errors in the trained solution) and the kernel pa-
rameter like RBF width γ . To decide which values to choose for parameter C and γ , a grid search algorithm 
was implemented using MATLAB as suggested by Hsu et al. [25]. The parameters that obtain the best accuracy 
using a 10-fold cross validation on the training dataset were retained. Next, a SVM model was trained using 
WEKA depending on the optimal parameters to predict and classify the Web objects whether the objects would 
be re-visited or not. Regarding C4.5 training, a J48 learning algorithm was used, which is a Java re-implemen- 
tation of C4.5 and provided with WEKA tool. The default values of parameters and settings were used as deter-
mined in WEKA. In NB training, the datasets were discretized using a MDL method suggested by Fayyad and 
Irani [26] with default setup in WEKA. Once the training dataset was prepared and discretized, NB was trained 
using WEKA as well.  

In order to evaluate the proposed Intelligent Dynamic-Aging Approaches, the trace-driven simulator Web-
Traff [27] was modified to meet the proposed caching approaches. The trained classifiers were integrated with 
WebTraff to simulate the proposed intelligent Web proxy cache replacement approaches. The WebTraff simu-
lator receives the prepared log proxy file as input and generates files containing performance measures as out-
puts. In addition, the maximum cache size should be determined in the simulator. The simulator starts automati-
cally with a cache size of 1 MB, and scales it up by a factor of two for each run until the maximum desired 
cache size is reached. The output reported by the simulator shows cache size (in MB), hit ratio, and byte hit ratio 
for each cache size simulated. 

In WebTraff simulation, an infinite cache is required to determine the maximum cache size in the simulator, 
which represents the stop point during the simulation. The infinite cache is a cache with enough space to store 
all requested objects without the need to replace any object. The infinite cache size is defined as the total size of  
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Figure 2. The algorithm of intelligent DA approaches.                     

 
all unique requests. Therefore, it is unnecessary to consider any replacement policy for an infinite cache. In an 
infinite cache, the hit ratio (HR) and byte hit ratio (BHR) reach their maximum values.  

HR and BHR are the most widely used metrics in evaluating the performance of Web caching [1]-[8]. HR is 
defined as the percentage of requests that can be satisfied by the cache. Note that HR only indicates how many 
requests hit and does not indicate how much bandwidth can be saved. BHR is the number of bytes satisfied from 
the cache as a fraction of the total bytes requested by the user. BHR represents the saved network bandwidth 
achieved by caching approach.  

In order to clarify the benefits of the proposed Intelligent Dynamic-Aging Approaches, the improvement ratio 
(IR) of the performance in terms of HR and BHR for each particular cache size can be calculated using Equation 
(8). 

( ) ( )100 %
PM CM

IR
CM
−

= ×                             (8) 

where IR is the percent of improvement in terms of HR or BHR achieved by the proposed method (PM), Intelli-
gent Dynamic-Aging method, over the conventional method (CM) which is LFU-DA.  

As can be observed from Table 3, as the cache size increased, the performance improvement of the proposed 
intelligent SVM-DA, NB-DA and C4.5-DA over LFU-DA increased for the five proxy datasets. However, the 
performance of the proposed intelligent SVM-DA, NB-DA and C4.5-DA were roughly the same as the conven-
tional LFU-DA at high levels of the proxy cache capacity. The intuition behind this is that when the cache size 
was close to the size of the infinite cache, the performance became stable and close to its maximum level. On 
the contrary, when the cache size was small, the objects replacement was frequently required. Hence, the effect 
of the performance of replacement policy was clearly noted. 

Table 3 presents the average IRs achieved by SVM-DA, NB-DA and C4.5-DA over the conventional 
LFU-DA algorithm for the five proxy datasets in each particular cache. The simulation results in Table 3 show 
that the proposed SVM-DA, NB-DA and C4.5-DA significantly improved the performance of the conventional 
LFU-DA approach. The average IRs of HR achieved by SVM-DA, NB-DA and C4.5-DA over LFU-DA in- 
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Table 3. The average IRs (%) achieved by intelligent DA approaches over conventional LFU-DA.                              

Cache size (MB) 
Average IR of SVM-DA 

over LFU-DA (%) 
Average IR of NB-DA 

over LFU-DA (%) 
Average IR of C4.5-DA 

over LFU-DA (%) 

HR BHR HR BHR HR BHR 

1 13.47 10.72 35.458 19.536 16.088 12.81 

2 13.344 8.266 25.776 41.184 15.388 10.694 

4 11.234 30.37 19.948 69.074 15.88 26.312 

8 14.85 5.61 16.9 21.932 14.916 8.232 

16 12.192 4.666 12.512 9.262 12.098 5.768 

32 11.328 4.514 9.104 4.558 10.946 4.912 

64 10.036 7.854 9.806 11.814 10.276 9.056 

128 8.328 6.02 4.358 −1.934 7.712 2.316 

256 9.49 0.674 3.848 −1.276 8.172 0.766 

512 8.422 0.732 2.036 −1.158 7.348 0.45 

1024 6.058 0.308 −0.422 −0.436 5.018 0.102 

2048 5.232 −0.034 −0.964 −1.084 3.876 −0.552 

4096 2.91 −0.108 −3.04 −0.894 1.5 −0.19 

8192 1.858 −0.474 −2.828 −0.498 0.838 −0.286 

16,384 0.894 −0.484 −1.658 −0.146 0.788 0.232 

32,768 0.706 0.028 −1.148 0.038 0.61 0.118 

 
creased by 14.85%, 35.458% and 16.088% respectively. In terms of BHR, the superior BHR of the conventional 
LFU-DA was maintained using the proposed SVM-DA, NB-DA and C4.5-DA approaches in the worst case. In 
the best case, the average IRs achieved by SVM-DA, NB-DA and C4.5-DA over LFU-DA increased by 30.37%, 
69.074% and 26.312%, respectively. This was due to the capability of the SVM, NB or C4.5 classifier used with 
the proposed approaches to accurately predict the probability of objects belonging to the class of objects that 
would be revisited. On the other hand, LFU-DA worked to the advantage of some large objects under BHR. In 
other words, LFU-DA gave some larger objects, which recently requested, the same chance to stay in the cache 
as their smaller counterparts. 

When the proposed intelligent DA approaches were compared with each other, the HRs of the proposed 
SVM-DA, NB-DA and C4.5-DA approaches were comparable when the cache size was small, while HR of 
SVM-DA was better compared to the HRs of NB-DA and C4.5-DA with large cache sizes. On the other hand, 
the BHR of NB-DA was better than BHR of SVM-DA and C4.5-DA with small caches, while the BHRs of 
SVM-DA and C4.5-DA was better compared to BHR of NB-DA when the cache size was equal or greater than 
128 MB. Thus, the performance of SVM-DA was more stable and provided a better balance between HR and 
BHR when compared to other algorithms across the different cache sizes. 

6. Conclusion 
LFU-DA policy is a conventional Web caching method, which attempts to remove the cache pollution in a LFU 
policy. However, the performance of LFU-DA in terms of hit ratio is not efficient enough. In this paper, novel 
intelligent dynamic aging approaches based on SVM, NB and C4.5, which are known as SVM-DA, NB-DA and 
C4.5-DA, were suggested for making cache replacement decisions with better hit ratio. As an alternative to the 
frequency factor in LFU-DA, the proposed SVM-DA, NB-DA and C4.5-DA approaches combined the most 
significant factors depending on intelligent classifier for predicting probability that Web objects would be re-vi- 
sited later. The simulation results revealed that the performance of the conventional LFU-DA was significantly 
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enhanced by using the proposed intelligent SVM-DA, NB-DA and C4.5-DA approaches. This was due to the 
capability of the SVM-DA, NB-DA and C4.5-DA approaches to accurately predict the probability of objects 
belonging to the class of objects that would be revisited. The average IRs of HR achieved by SVM-DA, NB-DA 
and C4.5-DA over LFU-DA increased by 14.85%, 35.458% and 16.088%, respectively, while the average IRs of 
BHR increased by 30.37%, 69.074% and 26.31%, respectively. In the worst case, the proposed SVM-DA, 
NB-DA and C4.5-DA approaches retained the superior BHR of the conventional LFU-DA. Lastly, it also was 
observed from the simulation results that SVM-DA achieved the best BHR among all algorithms. 
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