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Average surface roughness value (Ra) is an important measure of the quality of a machined
work piece. Lower the Ra value, the higher is the work piece quality and vice versa. It is
therefore desirable to develop mathematical models that can predict the minimal Ra value
and the associated machining conditions that can lead to this value. In this paper, real
experimental data from an end milling process is used to develop models for predicating
minimum Ra value. Two techniques, model tree and sequential minimal optimization
based support vector machine, which have not been used before to model surface rough-
ness, were applied to the training data to build prediction models. The developed models
were then applied to the test data to determine minimum Ra value. Results indicate that
both techniques reduced the minimum Ra value of experimental data by 4.2% and 2.1%
respectively. Model trees are found to be better than other approaches in predicting
minimum Ra value.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Machining is the process of removing material from a work piece to transform it to a desired shape. Different machining
processes include conventional processes such as grinding, milling, drilling etc. and non-conventional processes such as
electrodischarge machining, electrochemical machining, waterjet cutting etc. The milling process uses a rotating cutter
for material removal. Two main types of milling are: peripheral milling and face milling. In peripheral milling the machined
surface is obtained parallel to the spindle rotation whereas in face milling the machined surface is produced normal to the
spindle rotation. Further the milling process is classified as conventional milling and climb milling. In conventional milling
the direction of feed of workpiece is against the cutter rotation whereas in climb milling, both the cutter rotation and the
workpiece feed are in the same direction. End milling involves a mix of peripheral and face milling and employs bottom
and edges of the milling cutter. Fig. 1 shows the geometry of milling process. The important parameters are cutting speed, feed
rate, depth of cut and rake angle. Cutting speed is the speed at which the tool tooth cuts through the workpiece. It is expressed
in meters per minute or surface feet per minute (SFPM). Feed rate is the speed at which the workpiece is fed into the cutting
tool and is expressed in inches per minute or millimetre per minute. Depth of cut specifies the penetration of the milling
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Fig. 1. Geometry of milling process showing the workpiece, cutting tool, newly formed surface, chip and different angles (adapted from [1]. a is the rake
angle which specifies the direction of chip flow. The angle b between flank and the new surface is called the clearance angle.
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cutter into the workpiece and indicates the amount of material removed in each pass. The rake angle specifies the direction of
chip flow as the workpiece is machined.

One of the commonly used measures of the performance of any machining process, such as milling is the surface rough-
ness of the machined work piece. Surface roughness is defined as the vertical deviations of the surface from its ideal form.
Different surface roughness parameters are in use such as root mean square roughness (Rq), roughness average (Ra) and
maximum peak-to-valley roughness (Ry or Rmax), etc. [2]. However, roughness average (Ra) is the most widely used
parameter. It is defined as the integral of the absolute value of roughness profile height over the evaluation length i.e.
Ra ¼
1
l

Z l

0
jyðxÞjdðxÞ;
where l is the sampling length and y is the ordinate of the profile curve as shown in Fig. 2.
A low surface roughness value (Ra) indicates high machining performance and a better quality work piece and vice versa.

A high quality work piece with lower surface roughness will be more corrosion resistant and have high creep life and fatigue
strength. Therefore, considerable research effort has been put into the development of models that could predict machining
parameters resulting in minimum Ra value. These models establish relationship between cutting conditions (usually
expressed in terms of cutting speed, feed rate, depth of cut and rake angle) and the resulting Ra value. Artificial Neural Net-
works (ANN) have been used in the prediction of surface roughness in drilling [3], abrasive waterjet machining [4], CNC lathe
[5] and end milling [6,7]. Least square support vector regression (LS-SVR) is employed in [8,9] to predict surface roughness in
the end milling process. In [7] regression and ANN models for predicting minimum Ra value in the end milling process were
developed. As compared to experimental data, they achieved a reduction in minimum value of Ra by 1.57% and 1.07% by
regression and ANN models respectively. References [10,11] provide a detail review of techniques for predicting surface
roughness in different machining processes. In this paper we use sequential minimal optimization (SMO) based support
vector machine (SVM) [12,13] and model trees [14,15] to determine minimum Ra value in the end milling process.

1.1. Contributions

Our main contributions in this paper are as follows:

1. The techniques of model trees and sequential minimal optimization based support vector machines (SMO-SVM) have not
been used before to model surface roughness. Our work builds upon and is an extension of the work previously reported
in [7]. In [7] the authors modeled surface roughness data using simple regression and Artificial Neural Network (ANN).
We have modeled, for the first time, the same data using model trees and SMO-SVM. Our contribution is that we have
shown that both of these techniques can be used to accurately model real experimental data of an end milling process
and predict the cutting conditions that can result in minimal surface roughness value, thus ensuing increased quality
of the machined work piece.
Fig. 2. Definition of surface roughness. l is the sampling length and y is the ordinate of the roughness profile curve.
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2. We have described the way to select appropriate data for training and testing. An experimental dataset is divided into two
different types of training and test datasets. An explanation of the composition of these two different types of training and
test datasets and their impact on the accuracy of the regression models developed using SMO-SVM and model trees is
provided. We have highlighted which composition is better out of the two and the causes of improvement in the accuracy
of the developed regression models due to it.

3. We have in this paper, shown improved results than the previously reported ones [7] for the problem of finding minimum
surface roughness value Ra for three type of cutting tools: uncoated, TiA1N coated and SNTR coated. We have shown that
the techniques of model trees and SMO-SVM combined with carefully crafted training and test sets perform better as they
can identify surface roughness values lower than one obtained through simple regression and ANN. The validity of the
results is carried out through graphical plots and tests for statistical significance.

This paper is organized as follows: Section 1 introduces the significance of finding minimum value of surface roughness
and describe some existing techniques, Section 2 discusses the techniques of model tree and SMO-SVM, Section 3 describes
the data set used in this paper and elaborates the results of employing model trees and SMO-SVM for estimating minimum
Ra value, Section 4 evaluates the results using t tests and making comparison with [7], finally Section 5 concludes the paper.

2. Models for predicting surface roughness

Developing mathematical models for predicting Ra value is a challenging task because surface roughness value is the
result of complex interdependence between various process parameters. In this section we describe the techniques of model
trees and SMO-SVM that can be employed to generate reliable regression based models for Ra value prediction. To the best of
our knowledge, this is the first work that employs these two techniques for predicting minimum Ra value. These two tech-
niques are selected as they belong to two different families of algorithms. The models produced by SVM are opaque like the
models produced by ANN. Model trees, on the other hand, belong to decision tree family. As compared to ANNs, they produce
more understandable models by providing greater visibility into the relationship between variables that build the model.

2.1. M5 model trees

M5 model trees [14,15] have multivariate linear regression models at their leaf nodes, differing from regression trees [16]
that have numeric values or decision trees that have classes at the leaf nodes. They can thus be compared to piecewise linear
functions. Decision tree induction algorithm is used to build model tree. However, in contrast to decision tree where
maximization of information gain is the splitting criteria, in model tree the minimization of variation (standard deviation
– sd) in the intra-subset class values is used as the splitting criteria. At each node, the standard deviation of the class values
reaching that node is taken as a measure of error. The expected reduction in error is then calculated for each attribute.
The attribute which gives maximum reduction in error is chosen for performing splitting. The standard deviation reduction
(SDR) is calculated by the following equation [15]:
SDR ¼ sdðKÞ �
X

i

jKij
K
� sdðKiÞ;
where K is the set of examples that reach the node and K1, K2, . . . are the sets resulting from splitting the node according to
the selected attribute.

The splitting stops if the change in class values (standard deviation) of instances reaching a node becomes very small or
when there are only few instances left. Pruning is performed from the leaf nodes and inner nodes are transformed into leaf
nodes by replacing them with a linear regression function. To avoid discontinuities between the linear models of the adja-
cent leaf nodes in the pruned tree, a smoothing process is carried out. The trees formed by M5 algorithm are generally much
smaller than the regression trees. M5 model trees have the ability to efficiently scale with very high dimensional data having
hundreds of attributes.

2.2. Sequential minimal optimization based support vector machine

Support vector machine (SVM) [17] has found applications in numerous fields for solving both regression and classifica-
tion problems. It solves a nonlinear low dimensional classification problem by projecting it into high dimensional space
where an optimal separating hyperplane is constructed between the positive and negative classes with maximum margin.
Support vector regression tries to find a continuous value function that fits the data. The input is mapped to a high dimension
feature space and a linear model is constructed in that space. The aim is to minimize the functions of the following form [18]:
L ¼ l
1

Xl

i¼1

jyi � f ðxi;w; bÞje þ kwk
2
:

In the above equation |�|e is e-sensitive error function defined as follows:



Table 1
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Ra (m
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jxje ¼
0 if jxj < e
jxj � e otherwise

�
:

The output of SVM is then expressed as:
f ðx; aþ; a�; bÞ ¼
Xl

i¼1

ðaþ � a�ÞKðxi; xÞ þ b;
where aþi and a�i are positive and negative Lagrange multipliers that obey 0 6 aþi ; a
�
i ; 8i and aþi ; a

�
i ;¼ 0; 8i.

Sequential minimal optimization is a learning algorithm for SVM originally proposed for classification problems [19]. A
variant of this algorithm for support vector regression was proposed in [12] and subsequently improved by [13]. It
continuously searches for two Lagrange multipliers that can be optimized with respect to each other and then computes
the optimal step for the two Lagrange multipliers. For detailed explanation refer to [18].

3. Experimental dataset and results

The experimental dataset reported by [7] was chosen to study the performance of M5 model trees and support vector
machine based regression models for predicting the minimum value of surface roughness. Their machining experiments
involved 24 trials to measure Ra value in the end milling process based on eight data of two levels DOE 2k full factorial, four
center and twelve axial points. All Ra values were collected for three type of cutting tools: uncoated, TiA1N coated and SNTR
coated. The experimental results reported by them are shown in Table 1 and are used in this paper for developing M5 and
support vector machine based regression models.

It may be noted that for some instances in Table 1 (such as 9 and 10 or 13 and 14, etc.), identical cutting conditions result
in different Ra values. This discrepancy in Ra values may be attributed to uncontrollable factors that affect machining such as
tool wear, chips formation, vibrations, non-homogeneity of tool and work piece material and machine motion errors, etc.
[20]. This implies that if further experiments are carried out, we may obtain further different Ra values corresponding to
identical cutting conditions, some of which may be lower than the currently known values. The aim of this research is to build
mathematical models that can predict such potential cutting conditions that may lead to least Ra value.

All the experimental data including cutting condition values as well as Ra values of Table 1 were normalized using the
following equation [3]:
xi ¼
0:8

dmax � dmin
ðdi � dminÞ þ 0:1: ð1Þ
Normalized data is shown in Table 2.
ental cutting conditions and Ra values for end milling process [7]. Ra values are taken for three tools: uncoated, TiA1N coated and SNTR coated.

Data source Setting values of experimental cutting conditions Experimental Ra value (lm)

Cutting speed v (m/min) Feed rate f (mm/tooth) Radial rake angle c (�) Ra_uncoated Ra_TiA1N Ra_SNTR

DOE 2k 130 0.03 7 0.365 0.32 0.284
160 0.03 7 0.256 0.266 0.196
130 0.07 7 0.498 0.606 0.668
160 0.07 7 0.464 0.476 0.624
130 0.03 13 0.428 0.260 0.280
160 0.03 13 0.252 0.232 0.190
130 0.07 13 0.561 0.412 0.612
160 0.07 13 0.512 0.392 0.576

Center 144.22 0.046 9.5 0.464 0.324 0.329
144.22 0.046 9.5 0.444 0.38 0.416
144.22 0.046 9.5 0.448 0.460 0.352
144.22 0.046 9.5 0.424 0.304 0.400

Axial 124.53 0.046 9.5 0.328 0.360 0.344
124.53 0.046 9.5 0.324 0.308 0.320
167.03 0.046 9.5 0.236 0.340 0.272
167.03 0.046 9.5 0.240 0.356 0.288
144.22 0.025 9.5 0.252 0.308 0.230
144.22 0.025 9.5 0.262 0.328 0.234
144.22 0.083 9.5 0.584 0.656 0.640
144.22 0.083 9.5 0.656 0.584 0.696
144.22 0.046 6.2 0.304 0.300 0.361
144.22 0.046 6.2 0.288 0.316 0.360
144.22 0.046 14.8 0.316 0.324 0.368
144.22 0.046 14.8 0.348 0.396 0.360

inimum) 0.236 0.232 0.190
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3.1. Calculation process of predicted dataset

Calculation of predicted values from the available data using M5 and SMO-SVM involves the following steps:

1. The data is first divided into two sets: training set and test set. The decision of which data tuples should go in which set is
very important and affects the accuracy of the predicated values. We have carefully selected the data tuples for each set
differently than [7] and describe the rationale for this selection, later in this section.

2. The training data set is fed as input to the appropriate algorithm (M5 or SMO-SVM) which then generates the model of
the data as output (cf. Sections 2.1 and 2.2).

3. The test set is supplied as input to the data model obtained in the previous step to get the predicted values.

This calculation process of predicted dataset is shown in Fig. 3. For experiments, in this paper, we divided the normalized
data of Table 2 into two types of training and testing datasets. The composition of each of these datasets and the results
obtained are discussed in the following sections.
3.2. Training and test dataset 1

In the first type of experiments, the training and testing datasets were created in the same way as [7] i.e. the last 16 rows
of Table 2 were taken as training data as shown in Table 3 and the first 8 rows as the test data as shown in Table 4.
3.3. Results of M5P model tree based regression models for test dataset 1

Six model trees (3 cutting tools � 2 tree parameters: pruning enabled and pruning disabled) were built for the normalized
training dataset of Table 3 using M5P tree implementation of the Weka suite of machine learning algorithms [21]. The results
(predicted minimum Ra value) are shown in Table 5.

To select the best M5 model tree, three factors: Root Mean Square Error (RMSE), correlation and minimum predicted
value of Ra are considered. Table 6 states the correlation and RMSE values of the six model trees corresponding to the testing
data as reported by Weka. First we select the top three best model trees having the lowest RMSE values. Table 6 shows that
the models for TiA1N cutting tool with pruning enabled, TiA1N cutting tool with pruning disabled and uncoated tool with
pruning enabled have the lowest RMSE values of 0.2253, 0.2253 and 0.2257 respectively. Now, amongst these three selected
models we consider the correlation value of each and select the best two having the highest correlation values. It is evident
from Table 6 that the correlation values of the three models are the same i.e. 0. Thus, we select the models for TiA1N tool
Table 2
Normalized experimental cutting conditions and Ra values for end milling process [7]. In contrast to [7] the first eight rows with all distinct cutting conditions
pairs are taken as the training set. The remaining 16 rows are used as the test set.

No. Data source Setting values of experimental cutting conditions Experimental Ra value (lm)

Cutting speed v (m/min) Feed rate f (mm/tooth) Radial rake angle c (�) Ra_uncoated Ra_TiA1N Ra_SNTR

1 DOE 2k 0.203 0.169 0.174 0.346 0.266 0.249
2 0.768 0.169 0.174 0.138 0.164 0.109
3 0.203 0.721 0.174 0.599 0.806 0.856
4 0.768 0.721 0.174 0.534 0.560 0.786
5 0.203 0.169 0.733 0.466 0.153 0.242
6 0.768 0.169 0.733 0.130 0.100 0.100
7 0.203 0.721 0.733 0.719 0.440 0.767
8 0.768 0.721 0.733 0.626 0.402 0.710
9 Center 0.471 0.390 0.407 0.534 0.274 0.320
10 0.471 0.390 0.407 0.496 0.379 0.457
11 0.471 0.390 0.407 0.504 0.530 0.356
12 0.471 0.390 0.407 0.458 0.236 0.432
13 Axial 0.100 0.390 0.407 0.275 0.342 0.343
14 0.100 0.390 0.407 0.268 0.243 0.306
15 0.900 0.390 0.407 0.100 0.304 0.230
16 0.900 0.390 0.407 0.108 0.334 0.255
17 0.471 0.100 0.407 0.130 0.243 0.163
18 0.471 0.100 0.407 0.150 0.281 0.170
19 0.471 0.900 0.407 0.763 0.900 0.811
20 0.471 0.900 0.407 0.900 0.764 0.900
21 0.471 0.390 0.100 0.230 0.228 0.370
22 0.471 0.390 0.100 0.199 0.258 0.369
23 0.471 0.390 0.900 0.252 0.274 0.381
24 0.471 0.390 0.900 0.313 0.409 0.369
Ra (minimum) 0.100 0.100 0.100



Fig. 3. Calculation process of the predicted dataset.

Table 3
Training dataset 1 used for generating models using M5 and SMO-SVM.

No. Data source Setting values of experimental cutting conditions Experimental Ra value (lm)

v (m/min) f (mm/tooth) c (�) Ra_uncoated Ra_TiA1N Ra_SNTR

1 Center 0.471 0.390 0.407 0.534 0.274 0.320
2 0.471 0.390 0.407 0.496 0.379 0.457
3 0.471 0.390 0.407 0.504 0.530 0.356
4 0.471 0.390 0.407 0.458 0.236 0.432
5 Axial 0.100 0.390 0.407 0.275 0.342 0.343
6 0.100 0.390 0.407 0.268 0.243 0.306
7 0.900 0.390 0.407 0.100 0.304 0.230
8 0.900 0.390 0.407 0.108 0.334 0.255
9 0.471 0.100 0.407 0.130 0.243 0.163
10 0.471 0.100 0.407 0.150 0.281 0.170
11 0.471 0.900 0.407 0.763 0.900 0.811
12 0.471 0.900 0.407 0.900 0.764 0.900
13 0.471 0.390 0.100 0.230 0.228 0.370
14 0.471 0.390 0.100 0.199 0.258 0.369
15 0.471 0.390 0.900 0.252 0.274 0.381
16 0.471 0.390 0.900 0.313 0.409 0.369

Table 4
Test dataset 1 used for generating prediction dataset.

No. Data source Setting values of experimental cutting conditions Experimental Ra value (lm)

v (m/min) f (mm/tooth) c (�) Ra_uncoated Ra_TiA1N Ra_SNTR

1 DOE 2k 0.203 0.169 0.174 0.346 0.266 0.249
2 0.768 0.169 0.174 0.138 0.164 0.109
3 0.203 0.721 0.174 0.599 0.806 0.856
4 0.768 0.721 0.174 0.534 0.560 0.786
5 0.203 0.169 0.733 0.466 0.153 0.242
6 0.768 0.169 0.733 0.130 0.100 0.100
7 0.203 0.721 0.733 0.719 0.440 0.767
8 0.768 0.721 0.733 0.626 0.402 0.710

Table 5
Predicted Ra values of M5 model tress for the three tools in test dataset 1. Two models are developed for each tool, one with pruning enabled and the other with
pruning disabled.

No. Data source Unpruned = true Unpruned = false

Ra_uncoated Ra_TiA1N Ra SNTR Ra_uncoated Ra_TiA1N Ra SNTR

1 DOE 2k 0.355 0.375 0.39 0.355 0.375 0.39
2 0.355 0.375 0.39 0.355 0.375 0.39
3 0.355 0.375 0.39 0.355 0.375 0.39
4 0.355 0.375 0.39 0.355 0.375 0.39
5 0.355 0.375 0.39 0.355 0.375 0.39
6 0.355 0.375 0.39 0.355 0.375 0.39
7 0.355 0.375 0.39 0.355 0.375 0.39
8 0.355 0.375 0.39 0.355 0.375 0.39
Ra (minimum) 0.355 0.375 0.39 0.355 0.375 0.39

1124 S. Hashmi et al. / Applied Mathematical Modelling 39 (2015) 1119–1136



Table 6
Correlation and Root Mean Square Error values of model trees for the test dataset 1.

No. Modeling technique Ra_uncoated Ra_TiA1N Ra_SNTR

RMSE Correlation RMSE Correlation RMSE Correlation

1 M5Unpruned=True 0.2257 0 0.2253 0 0.3209 0
2 M5Unpruned=False 0.2257 0 0.2253 0 0.3209 0

Table 7
Predicted Ra values of SMO-SVM models for the three tools in test dataset 1. Two models are developed for each tool, one with normalized polynomial kernel
and the other with RBF kernel. The values of exponent and gamma shown are the ones which resulted in least RMSE.

No. Data source Normalized polynomial kernel RBF kernel

Ra_uncoated Ra_TiA1N Ra SNTR Ra_uncoated Ra_TiA1N Ra SNTR

Exponent = 1.10 Exponent = 8 5.1 Gamma = 3.91 Gamma = 7 Gamma = 0.7

1 DOE 2k 0.315 0.38 0.435 0.089 0.305 0.22
2 0.003 0.362 0.21 0.023 0.309 0.166
3 0.444 0.802 0.906 0.456 0.482 0.637
4 0.26 0.309 0.44 0.383 0.47 0.58
5 0.453 0.362 0.372 0.483 0.488 0.625
6 0.149 0.271 0.187 0.144 0.376 0.17
7 0.453 0.362 0.372 0.483 0.488 0.625
8 0.339 0.406 0.471 0.418 0.477 0.57
Ra (minimum) 0.003 0.271 0.187 0.023 0.305 0.166
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with pruning disabled and TiA1N tool with pruning enabled as the best two models and proceed by considering the third
factor, minimum predicted value of Ra. Table 5 shows that the predicted minimum values of Ra by TiA1N tool with pruning
disabled is 0.375 whereas for TiA1N tool with pruning enabled it is also 0.375. Thus, we select TiA1N tool with pruning enabled
as the best prediction model (TiA1N tool with pruning disabled can also be equally selected as the best model as it is also
having the similar RMSE, correlation and minimum predicted value of Ra).

The minimum normalized predicted Ra value by the selected best M5 model tree is 0.375. The corresponding normalized
and actual cutting conditions values cannot be determined explicitly as the generated model has predicted this constant
value 0.375 with respect to all input values. This is not a useful and interesting result as the predicted value is higher than
the experimental value which is in contrast to the goals of this work i.e. to determine a lower Ra value and the corresponding
input cutting conditions. The denormalized minimum predicted Ra value is calculated using a modified Eq. (1) as follows [7]:
di ¼
ðyRa � 0:100Þðdmax � dminÞ

0:8
þ dmin ¼

ð0:375� 0:100Þð0:696� 0:190Þ
0:8

þ 0:190 � 0:364 lm:
3.4. Results of SMO-SVM models for test dataset 1

Six SVM models (3 cutting tools � 2 SVM kernels) were developed using SMO-SVM implementation of Weka (SMOreg)
with the normalized training dataset of Table 3. Table 7 shows the result (prediction of minimum Ra value) of applying
the SMO-SVM models to the test set. Two kernels: normalized polynomial kernel and radial basis function (RBF) kernel were
used for each of the cutting tool data. Experiments were performed with different values of Exponent parameter for normal-
ized polynomial kernel and Gamma parameter for RBF kernel and the values resulting in lowest RMSE were selected finally
and reported in Table 7.

To determine the best SMO-SVM prediction model, three factors: Root Mean Square Error (RMSE), correlation and
minimum predicted value of Ra are considered. Table 8 states the correlation and RMSE values of the six SMO-SVM models
corresponding to the testing data as reported by Weka. First we select the top three best SMO-SVM models having the lowest
RMSE values. Table 8 shows that the models for TiA1N cutting tool with normalized polynomial kernel and uncoated cutting
tool with RBF kernel and normalized polynomial kernel have the lowest RMSE values of 0.1558, 0.1667 and 0.1843 respec-
tively. Now, amongst these three selected models we consider the correlation value of each and select the best two having
the highest correlation values. It is evident from Table 8 that the correlation values of the three models are 0.7519, 0.882 and
0.8329 respectively. Thus, we select the models for uncoated tool with RBF kernel and normalized polynomial kernel as the
best two models and proceed by considering the third factor, minimum predicted value of Ra. Table 7 shows that the
predicted minimum values of Ra by uncoated tool with RBF kernel is 0.023 whereas for normalized polynomial kernel it
is 0.003. Thus, we select uncoated tool with normalized polynomial kernel as the best prediction model.

The minimum normalized predicted Ra value by the selected best SMO-SVM model is 0.003 (row two of Table 7) and the
corresponding normalized cutting conditions values are: v = 0.768, f = 0.169 and c = 0.174 (second row of Table 4). The actual



Table 8
Correlation and Root Mean Square Error values of SMO-SVM models for the test dataset 1.

No. Modeling Technique Ra_uncoated Ra_TiA1N Ra_SNTR

RMSE Correlation RMSE Correlation RMSE Correlation

1 SMO-SVM (normalized poly kernel) 0.1843 0.8329 0.1558 0.7519 0.2249 0.7073
2 SMO-SVM (RBF kernel) 0.1667 0.882 0.2037 0.5512 0.1889 0.8086

Table 9
Training dataset 2 used for generating models using M5 and SMO-SVM. In contrast to the first type of experiments and [7] where the training set contained
duplicate tuples, here all the eight rows are distinct tuples having dissimilar cutting conditions pairs.

No. Data source Setting values of experimental cutting conditions Experimental Ra value (lm)

v (m/min) f (mm/tooth) c (�) Ra_uncoated Ra_TiA1N Ra_SNTR

1 DOE 2k 0.203 0.169 0.174 0.346 0.266 0.249
2 0.768 0.169 0.174 0.138 0.164 0.109
3 0.203 0.721 0.174 0.599 0.806 0.856
4 0.768 0.721 0.174 0.534 0.560 0.786
5 0.203 0.169 0.733 0.466 0.153 0.242
6 0.768 0.169 0.733 0.130 0.100 0.100
7 0.203 0.721 0.733 0.719 0.440 0.767
8 0.768 0.721 0.733 0.626 0.402 0.710

Table 10
Test dataset 2 used for generating prediction dataset.

No. Data source Setting values of experimental cutting conditions Experimental Ra value (lm)

v (m/min) f (mm/tooth) c (�) Ra_uncoated Ra_TiA1N Ra_SNTR

1 Center 0.471 0.390 0.407 0.534 0.274 0.320
2 0.471 0.390 0.407 0.496 0.379 0.457
3 0.471 0.390 0.407 0.504 0.530 0.356
4 0.471 0.390 0.407 0.458 0.236 0.432
5 Axial 0.100 0.390 0.407 0.275 0.342 0.343
6 0.100 0.390 0.407 0.268 0.243 0.306
7 0.900 0.390 0.407 0.100 0.304 0.230
8 0.900 0.390 0.407 0.108 0.334 0.255
9 0.471 0.100 0.407 0.130 0.243 0.163
10 0.471 0.100 0.407 0.150 0.281 0.170
11 0.471 0.900 0.407 0.763 0.900 0.811
12 0.471 0.900 0.407 0.900 0.764 0.900
13 0.471 0.390 0.100 0.230 0.228 0.370
14 0.471 0.390 0.100 0.199 0.258 0.369
15 0.471 0.390 0.900 0.252 0.274 0.381
16 0.471 0.390 0.900 0.313 0.409 0.369
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cutting condition values are v = 160 m/min, f = 0.03 mm/tooth and c = 7� (second row of Table 1). The denormalized
minimum predicted Ra value is calculated using a modified Eq. (1) as follows [7]:
di ¼
ðyRa � 0:100Þðdmax � dminÞ

0:8
þ dmin ¼

ð0:003� 0:100Þð0:696� 0:190Þ
0:8

þ 0:190 � 0:128 lm:
3.5. Training and test dataset 2

In the second type of experiments, the training and testing datasets were created differently by selecting different tuples
than the first type. The normalized data of Table 2 was divided into training and test sets as follows: DOE 2k data (first eight
rows of Table 2) were used as the training set as shown in Table 9, the remaining 16 tuples of data (the four tuples of center
data and twelve tuples of axial data) were used as the test set as shown in Table 10. This is in contrast to the first type of
experiments and [7] where the last 16 rows of Table 2 were taken as training data and the first 8 rows as the test data.
Our rationale for this division is as follows: the first eight rows have distinct pairs of cutting conditions values; however,
the last 16 rows have instances where identical cutting conditions have resulted in different Ra values. The data with distinct
input and output values will give more opportunity to the training algorithm to better understand the characteristics of the



Table 11
Predicted Ra values of M5 model tress for the three tools in test dataset 2. Two models are developed for each tool, one with pruning enabled and the other with
pruning disabled.

No. Data source Pruning disabled Pruning enabled

Ra_uncoated Ra_TiA1N Ra SNTR Ra_uncoated Ra_TiA1N Ra SNTR

1 Center 0.333 0.280 0.326 0.358 0.301 0.361
2 0.333 0.280 0.326 0.358 0.301 0.361
3 0.333 0.280 0.326 0.358 0.301 0.361
4 0.333 0.280 0.326 0.358 0.301 0.361
5 Axial 0.333 0.280 0.326 0.358 0.301 0.361
6 0.333 0.280 0.326 0.358 0.301 0.361
7 0.333 0.280 0.326 0.358 0.301 0.361
8 0.333 0.280 0.326 0.358 0.301 0.361
9 0.165 0.120 0.099 0.157 0.109 0.088
10 0.165 0.120 0.099 0.157 0.109 0.088
11 0.682 0.618 0.803 0.713 0.640 0.841
12 0.682 0.618 0.803 0.713 0.640 0.841
13 0.333 0.403 0.326 0.358 0.448 0.361
14 0.333 0.403 0.326 0.358 0.448 0.361
15 0.333 0.084 0.326 0.358 0.066 0.361
16 0.333 0.084 0.326 0.358 0.066 0.361
Ra (minimum) 0.165 0.084 0.099 0.157 0.066 0.088

Table 12
Correlation and Root Mean Square Error values of model trees for the test dataset 2.

No. Modeling technique Ra_uncoated Ra_TiA1N Ra_SNTR

RMSE Correlation RMSE Correlation RMSE Correlation

1 M5Prunning Disabled 0.1404 0.8209 0.1614 0.6917 0.0669 0.9534
2 M5Prunning Enabled 0.1412 0.8136 0.1669 0.6424 0.0638 0.946
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data and build more accurate classifier than the data having identical input values but different output values. Thus, the first
8 rows of Table 2 (with all distinct cutting conditions pairs) are selected as training data and the remaining 16 rows (with
repeated identical cutting conditions pairs) as the testing data.

3.6. Results of M5P model tree based regression models for test dataset 2

Six model trees (3 cutting tools � 2 tree parameters: pruning enabled and pruning disabled) were built for the normalized
training dataset of Table 3 using M5P tree implementation of the Weka suite of machine learning algorithms [21]. The results
(predicted minimum Ra value) are shown in Table 11.

To select the best M5 model tree, three factors: Root Mean Square Error (RMSE), correlation and minimum predicted
value of Ra are considered. Table 12 states the correlation and RMSE values of the six model trees corresponding to the test-
ing data as reported by Weka. First we select the top three best model trees having the lowest RMSE values. Table 12 shows
that the models for SNTR cutting tool with pruning enabled, SNTR cutting tool with pruning disabled and uncoated tool with
pruning disabled have the lowest RMSE values of 0.0638, 0.0669 and 0.1404 respectively. Now, amongst these three selected
models we consider the correlation value of each and select the best two having the highest correlation values. It is evident
from Table 12 that the correlation values of the three models are 0.946, 0.9534 and 0.8209 respectively. Thus, we select the
models for SNTR tool with pruning disabled and SNTR tool with pruning enabled as the best two models and proceed by
considering the third factor, minimum predicted value of Ra. Table 11 shows that the predicted minimum values of Ra by
SNTR tool with pruning disabled is 0.099 whereas for SNTR tool with pruning enabled it is 0.088. Thus, we select SNTR tool
with pruning enabled as the best prediction model.

The minimum normalized predicted Ra value by the selected best M5 model tree is 0.088 (row nine and ten of Table 11)
and the corresponding normalized cutting conditions values are: v = 0.471, f = 0.100 and c = 0.407 (ninth and tenth rows of
Table 10). The actual cutting condition values are v = 144.22 m/min, f = 0.025 mm/tooth and c = 9.5� (seventeenth and
eighteenth rows of Table 1). The denormalized minimum predicted Ra value is calculated using a modified Eq. (1) is as
follows [7]:
di ¼
ðyRa � 0:100Þðdmax � dminÞ

0:8
þ dmin ¼

ð0:088� 0:100Þð0:696� 0:190Þ
0:8

þ 0:190 � 0:182 lm:



Table 13
Predicted Ra values of SMO-SVM models for the three tools in test dataset 2. Two models are developed for each tool, one with normalized polynomial kernel
and the other with RBF kernel. The values of exponent and gamma shown are the ones which resulted in least RMSE.

No. Data source Normalized polynomial kernel RBF kernel

Ra_uncoated Ra_TiA1 N Ra SNTR Ra_uncoated Ra_TiA1 N Ra SNTR

Exponent = 9 Exponent = 8 Exponent = 1.55 Gamma = 1 Gamma = 0.5 Gamma = 4.9

1 Center 0.360 0.324 0.423 0.372 0.318 0.393
2 0.360 0.324 0.423 0.372 0.318 0.393
3 0.360 0.324 0.423 0.372 0.318 0.393
4 0.360 0.324 0.423 0.372 0.318 0.393
5 Axial 0.494 0.426 0.630 0.469 0.361 0.481
6 0.494 0.426 0.630 0.469 0.361 0.481
7 0.158 0.160 0.244 0.273 0.272 0.335
8 0.158 0.160 0.244 0.273 0.272 0.335
9 0.113 0.088 0.094 0.171 0.136 0.117
10 0.113 0.088 0.094 0.171 0.136 0.117
11 0.635 0.740 0.735 0.712 0.630 0.821
12 0.635 0.740 0.735 0.712 0.630 0.821
13 0.486 0.498 0.520 0.370 0.392 0.426
14 0.486 0.498 0.520 0.370 0.392 0.426
15 0.344 0.271 0.328 0.388 0.208 0.392
16 0.344 0.271 0.328 0.388 0.208 0.392
Ra (minimum) 0.113 0.088 0.094 0.171 0.136 0.117

Table 14
Correlation and Root Mean Square Error values of SMO-SVM models for the test dataset 2.

No. Modeling technique Ra_uncoated Ra_TiA1N Ra_SNTR

RMSE Correlation RMSE Correlation RMSE Correlation

1 SMO-SVM (normalized poly kernel) 0.1639 0.6984 0.1551 0.6752 0.1364 0.769
2 SMO-SVM (RBF kernel) 0.1403 0.8243 0.1346 0.7463 0.0780 0.9290
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3.7. Results of SMO-SVM based regression models for test dataset 2

Six SVM models (3 cutting tools � 2 SVM kernels) were developed using SMO-SVM implementation of Weka (SMOreg)
with the normalized training dataset of Table 9. Table 13 shows the result (prediction of minimum Ra value) of applying
the SMO-SVM models to the test dataset 2. Two kernels: normalized polynomial kernel and radial basis function (RBF) kernel
were used for each of the cutting tool data. Experiments were performed with different values of Exponent parameter for
normalized polynomial kernel and Gamma parameter for RBF Kernel and the values resulting in lowest RMSE were selected
finally and reported in Table 13.

To determine the best SMO-SVM prediction model, three factors: Root Mean Square Error (RMSE), correlation and min-
imum predicted value of Ra are considered. Table 14 states the correlation and RMSE values of the six SMO-SVM models cor-
responding to the testing data as reported by Weka. First we select the top three best SMO-SVM models having the lowest
RMSE values. Table 14 shows that the models for SNTR cutting tool and TiA1N cutting tool with RBF kernel and SNTR tool
with normalized polynomial kernel have the lowest RMSE values of 0.0780, 0.1346 and 0.1364 respectively. Now, amongst
these three selected models we consider the correlation value of each and select the best two having the highest correlation
values. It is evident from Table 14 that the correlation values of the three models are 0.9290, 0.7463 and 0.769 respectively.
Thus, we select the models for SNTR tool with RBF kernel and normalized polynomial kernel as the best two models and
proceed by considering the third factor, minimum predicted value of Ra. Table 13 shows that the predicted minimum values
of Ra by SNTR tool with RBF kernel is 0.117 whereas for normalized polynomial kernel it is 0.094. Thus, we select SNTR tool
with Normalized Polynomial kernel as the best prediction model.

The minimum normalized predicted Ra value by the selected best SMO-SVM model is 0.094 (row nine and ten of Table 13)
and the corresponding normalized cutting conditions values are: v = 0.471, f = 0.100 and c = 0.407 (ninth and tenth rows of
Table 10). The actual cutting condition values are v = 144.22 m/min, f = 0.025 mm/tooth and c = 9.5� (seventeenth and eigh-
teenth rows of Table 1). The denormalized minimum predicted Ra value is calculated using a modified Eq. (1) as follows [7]:
di ¼
ðyRa � 0:100Þðdmax � dminÞ

0:8
þ dmin ¼

ð0:094� 0:100Þð0:696� 0:190Þ
0:8

þ 0:190 � 0:186 lm:
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4. Evaluation of results

The validation of model tree and SMO-SVM based models for predicting minimum value of Ra is carried out by plotting
and observing the graphs of predicted values vs. experimental values and using paired-samples t tests.

Figs. 4–6 show the plots of predicted values by M5 model trees vs. experimental values for test dataset 1. It is evident
from the Figs. 4–6 that in case of model trees applied on test dataset 1, the predicted values remain constant for all data
Fig. 4. Test dataset 1 (uncoated tool), predicted Ra by model trees vs. experimental data.

Fig. 5. Test dataset 1 (TiA1N tool), predicted Ra by model trees vs. experimental data.

Fig. 6. Test dataset 1 (SNTR tool), predicted Ra by model trees vs. experimental data.



Table 15
Statistics and correlations (experimental data vs. best M5 model trees for test dataset 1). Correlation value zero implies that the model does not bear any
relationship with the experimental data.

Mean N Std. Deviation Std. Error mean Correlation

Experimental_TiA1N 0.3614 8 0.24047 0.08502 0
M5Pruning_enabled_TiA1N 0.3750 8 0.00000 0.00000

Table 16
Paired-samples t test (experimental data vs. best M5 model tree for test dataset 1).

Pair Paired differences t df Sig. (2-tailed)

95% Confidence
interval of the
difference

Mean Std. Deviation Std. Error mean Lower Upper

Experimental_TiA1N and M5Unpruned=True_TiA1N �0.01363 0.240466 0.085017 �0.21466 0.1874 �0.1603 7 0.877

Fig. 7. Test dataset 1 (uncoated tool), predicted Ra by SMO-SVM vs. experimental data.

Fig. 8. Test dataset 1 (TiA1N tool), predicted Ra by SMO-SVM vs. experimental data.
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tuples resulting in the straight lines as compared to the experimental values which fluctuate widely and are represented by
the zigzag lines. This high dissimilarity in the line patterns indicate that the predicted values by model tree for test dataset 1
does not follow the experimental values adequately. Tables 15 and 16 present the results of paired-samples t test of test
dataset 1 experimental data for TiA1N tool paired with the predicated data by the best model tree (TiA1N tool with pruning
enabled). Tables 15 and 16 prove that the mean Ra value is increased by 0.01363 from the experimental results for TiA1N tool
to the best model tree results, t (7) = �0.1603 and p = 0.877. The 95% confidence interval ranges from �0.03224 to 0.1874.
Thus, the two means of experimental TiA1N tool and the best model tree are not significantly different from each other.



Fig. 9. Test dataset 1 (SNTR tool), predicted Ra by SMO-SVM vs. experimental data.

Table 17
Statistics and correlations (experimental data vs. best SMO-SVM model for test dataset 1).

Mean N Std. Deviation Std. Error mean Correlation

Experimental_Uncoated 0.448 8 0.22142 0.07828 0.833
SMO-SVM_NormPoly_Uncoated 0.3020 8 0.30200 0.161191

Table 18
Paired-samples t test (experimental data vs. best SMO-SVM for test dataset 1).

Pair Paired differences t df Sig. (2-tailed)

95% Confidence
interval of the
difference

Mean Std. Deviation Std. Error mean Lower Upper

Experimental_Uncoated and SMO-SVM_NormPoly_Uncoated 0.14275 0.124741 0.044102 0.038464 0.247 3.23678 7 0.014

Fig. 10. Test dataset 2 (uncoated tool), predicted Ra by model trees vs. experimental data.

S. Hashmi et al. / Applied Mathematical Modelling 39 (2015) 1119–1136 1131
However, the correlation value of zero indicates that the generated model bears no relationship with the real experimental
data.

Figs. 7–9 show the plots of predicted values by SMO-SVM vs. experimental values for test dataset 1. It is evident from the
Figs. 7–9 that in case of SMO-SVM applied on test dataset 1, the predicted values fluctuate in the similar manner as the
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experimental values thus resulting in similar line patterns. Tables 17 and 18 present the results of paired-samples t test of
test dataset 1 experimental data for uncoated tool paired with the predicated data by the best SMO-SVM model (uncoated
tool with normalized polynomial kernel). Tables 17 and 18 prove that the mean Ra value is decreased by 0.14275 from the
experimental results for uncoated tool to the best SMO-SVM model, t (7) = 3.23678 and p = 0.014. The 95% confidence inter-
val ranges from 0.038464 to 0.247. Thus, the two means of experimental uncoated tool and the best SMO-SVM model are
significantly different from each other indicating that the generated model does not bears good relationship with the real
experimental data.

Figs. 10–12 show the plots of predicted values by model tree vs. experimental values for test dataset 2. It is evident from
the Figs. 10–12 that in case of model tree applied on test dataset 2, the predicted values fluctuate in the similar manner as
the experimental values thus resulting in similar line patterns. Tables 19 and 20 present the results of paired-samples t test
of test dataset 2 experimental data for SNTR tool paired with the predicated data by the best model tree (SNTR tool with
pruning enabled). Tables 19 and 20 prove that the mean Ra value is reduced by 0.0026 from experimental results for SNTR
tool to the best model tree results, t (15) = 0.16 and p = 0.875. The 95% confidence interval ranges from �0.21466 to 0.03769.
Thus, the two means of experimental SNTR tool and the best model tree are not significantly different from each other.

Figs. 12–15 show the plots of predicted values by SMO-SVM vs. experimental values for test dataset 2. It is evident from
the Figs. 12–15 that in case of SMO-SVM applied on test dataset 2, the predicted values fluctuate in the similar manner as the
experimental values thus resulting in similar line patterns. Tables 21 and 22 show the results of paired-samples t test of test
dataset 2 experimental data for SNTR tool paired with the predicated data by the best SMO-SVM model (SNTR tool with nor-
malized polynomial kernel). Tables 21 and 22 show that the mean Ra value is increased by 0.035 from experimental results
for SNTR tool to the best SMO-SVM results, the 95% confidence interval ranges from �0.03224 to 0.03769, t (15) = �1.033
Fig. 11. Test dataset 2 (TiA1N tool), predicted Ra by model trees vs. experimental data.

Fig. 12. Test dataset 2 (SNTR tool), predicted Ra by model trees vs. experimental data.



Table 19
Statistics and correlations (experimental data vs. best M5 model tree for test dataset 2).

Mean N Std. Deviation Std. Error mean Correlation

Experimental_SNTR 0.3895 16 0.20067 0.050168 0.946
M5Pruning_enabled_SNTR 0.3572 16 0.19017 0.047543

Table 20
Paired-samples t test (experimental data vs best M5 model tree for test dataset 2). Sig. (0.875) is the p value which is greater than 0.05 indicating that there is
no significant difference between the means of the two data sets.

Pair Paired differences t df Sig. (2-tailed)

95% Confidence interval
of the difference

Mean Std. Deviation Std. Error mean Lower Upper

Experimental_SNTR and M5Pruning_enabled_SNTR 0.0026 0.065797 0.016449 �0.03244 0.03769 0.16 15 0.875

Fig. 13. Test dataset 2 (uncoated tool), predicted Ra by SMO-SVM vs. experimental data.

Fig. 14. Test dataset 2 (TiA1N tool), predicted Ra by SMO-SVM vs. experimental data.
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and p = 0.318. Thus, the two means of experimental SNTR tool and the best SMO-SVM model are not significantly different
from each other.

Considering the predicted Ra value, the model trees and SMO-SVM based models can be evaluated as follows:

4.1. Experimental data vs. model trees (test dataset 1)

For the experimental data, the minimum value of Ra is 0.190 lm for SNTR tool (cf. Table 1). However, in case of model
trees, the minimum predicted value of Ra is 0.364 lm for test dataset 1 (cf. Section 3.3). Thus, the model tree has provided
Ra value which is 0.174 lm greater than the experimental data. This poor result can be attributed to the inappropriately



Fig. 15. Test dataset 2 (SNTR tool), predicted Ra by SMO-SVM vs. experimental data.

Table 21
Statistics and correlations (experimental data vs. best SMO-SVM model for test dataset 2).

Mean N Std. Deviation Std. Error mean Correlation

Experimental_SNTR 0.3895 16 0.20067 0.050168 0.769
SMO-SVM-NormalizedPoly_SNTR 0.4246 16 0.199629 0.049907

Table 22
Paired-samples t test (experimental data vs best SMO-SVM model for test dataset 2). Sig. (0.318) is the p value which is greater than 0.05 indicating that there is
no significant difference between the means of the two data sets.

Pair Paired differences t df Sig. (2-tailed)

95% Confidence
interval of the
difference

Mean Std. Deviation Std. Error mean Lower Upper

Experimental_SNTR and SMO-SVM-NormalizedPoly_SNTR �0.035 0.136036 0.034009 �0.10761 0.03736 �1.033 15 0.318
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designed training and test datasets as proven by the results for the test dataset 2 where carefully crafted training and test
datasets resulted in the model tree providing better results.

4.2. Experimental data vs. SMO-SVM based model (test dataset 1)

The minimum predicted value of Ra by SMO-SVM is 0.128 lm for test dataset 1 (cf. Section 3.4). Comparing with the
experimental data, it is evident that SMO-SVM based model has resulted in a minimum Ra value which is 0.062 lm less than
the experimental data. Although a good result, the paired samples t-test indicate that the difference in the means of the pre-
dicted and experimental datasets is significantly large thus implying that the generated model does not adequately captures
the dynamics of the experimental data.

4.3. Experimental data vs. model trees (test dataset 2)

For the experimental data, the minimum value of Ra is 0.190 lm for SNTR tool (cf. Table 1). However, in case of model
trees, the minimum predicted value of Ra is 0.182 lm for test dataset 2 (cf. Section 3.6). Thus, the model tree has provided
Ra value which is 0.008 lm less than the experimental data. This result is better than the test dataset 1 where the model tree
predicted an Ra value which was 0.174 lm greater than the experimental data. Since the data tuples and the algorithm used
to generate the model are the same as training and test dataset 1, the better results can safely be attributed to the carefully
redesigned training and test datasets 2.

4.4. Experimental data vs. SMO-SVM based model (test dataset 2)

The minimum predicted value of Ra by SMO-SVM is 0.186 lm for test dataset 2 (cf. Section 3.7). Comparing with the
experimental data, it is evident that SMO-SVM based model has resulted in a minimum Ra value which is 0.004 lm less than
the experimental data. This result is better than the test dataset 1 where, although the predicted Ra value was less than the
experimental data but the difference in the means of the predicted and experimental datasets was significantly large



Table 23
Minimum value of surface roughness. Model tree and SMO-SVM have been used for the first time in this research and also used the empirical data with
different training and test sets (training and test dataset 2) than the ANN model of [7].

Technique Minimum
value of
Ra (lm)

Percentage change in Ra

value (compared with
lowest experimental value)

Remarks

Experimental 0.190 0 Actually observed minimum Ra value. A properly validated predicated
value lower than this is desirable

Model tress (test dataset 1) 0.364 +91.5 Poorly designed training and test datasets resulting in a predicted
value too high than the experimental Ra value

SMO-SVM (test dataset 1) 0.128 �32.6 Poorly designed training and test datasets resulting in significant
difference between the means of predicated and experimental datasets
indicating a poor model

Model tree (test dataset 2) 0.182 �4.2 Carefully redesigned training and test datasets resulting in a lower Ra

value by a good model with no significant difference between the
means of the predicated and experimental datasets

SMO-SVM (test dataset 2) 0.186 �2.1 Carefully redesigned training and test datasets resulting in a lower Ra

value by a good model with no significant difference between the
means of the predicated and experimental datasets

Regression [7] 0.187 �1.5 Model tree and SMO-SVM (test dataset 2) predicted even further lower
Ra value

ANN [7] 0.188 �1.05 Model tree and SMO-SVM (test dataset 2) predicted even further lower
Ra value
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indicating that the SMO-SVM model does not bear good resemblance with the experimental data. However, for test dataset 2
there was no significant difference in the means of the predicted and experimental datasets implying that the SMO-SVM has
now adequately captured the process dynamics.
4.5. Model tree vs. SMO-SVM

For test dataset 1, both model tree and SMO-SVM did not perform well with model tree predicting a very high Ra value
than the experimental data and SMO-SVM model failing on the paired sample t-test due to significantly large difference in
the means of the experimental and predicted datasets. However, with a carefully redesigned test dataset 2, both the model
tree and SMO-SVM performed well by predicting an Ra value lower than the experimental value, having line patterns of
predicted data bearing good similarity with the experimental data and having no significant difference in the means of
the predicted data and the experimental data. As the minimum predicted Ra value is 0.182 lm and 0.0186 lm for model tree
and SMO-SVM based model respectively, it is evident that the model tree has given Ra value which is 0.004 lm less than
SMO-SVM based model.
5. Conclusion

Two techniques, model trees and SMO-SVM were used for the first time in this research to build regression models for
predicting the minimum value of surface roughness Ra in the end milling process. Table 23 summarizes the minimum value
of Ra for the experimental data, model trees and SMO-SVM. Also the results reported in [7] using regression and ANN tech-
niques are included for comparison. It is evident from Table 23 that both the techniques, model trees and SMO-SVM reported
in this paper (when applied on properly crafted test dataset 2) have performed better than the regression and ANN tech-
niques reported in [7] as they have reduced the minimum Ra value of experimental data by 4.2 and 2.1% respectively.

This work also signifies the importance of careful partitioning of data into training and test datasets for obtaining more
accurate models. As demonstrated through detailed experimentation, both the techniques did not perform well when
applied to the training and test sets used in a previous study [7] (referred to as training and test dataset 1 in this paper).
In [7] the last 16 rows of Table 2 were taken as the training data. Many of these rows have different output values corre-
sponding to identical input attribute values that can lead to poorer training and degraded performance of the resulting
regression models. However, when we repartitioned the data by taking the first eight rows of Table 2 as the training dataset
that contain all unique attribute values and the remaining 16 rows as the test dataset, it resulted in better training of both,
model trees and SMO-SVM models as demonstrated through better results (in terms of lower predicted Ra value) that were
appropriately validated through observing the plots of predicted data vs. the experimental data and the difference in the
means of the predicted and experimental datasets.

The reliability of the results obtained through these regression models can be enhanced further by increasing the amount
empirical data through additional experimentation. In future, we will try to collect additional surface roughness related
experimental data and apply the techniques of model trees and SMO-SVM to it, to further test their modeling accuracy.

For the domain of surface roughness modeling, this discovery of the application of these two techniques (model trees and
SMO-SVM) along with the guidelines for their proper use through carefully designed training and test datasets is a step
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forward which will help the practitioners in this field in building more accurate models of surface roughness for other cut-
ting tools and different experimental settings.
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